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Preface

This text deals particularly with nonlinear differential equations which are exam-
ined with the help of regular variation. It was created within the A-Math-Net
project, and its primary purpose is to serve as a textbook for (almost) graduate
students. But it can be useful also for experts or for anybody who is interested in
asymptotic theory of differential equations.

The theory of regularly varying functions has been shown very useful in some
fields of qualitative theory of differential equations, see, in particular, the important
monograph by Marić [105] summarizing themes in the research up to the year
2000. This book served as an excellent source for our text, but of course, much
material is taken also from other sources. Actually, our treatise includes many of
the results that appeared after Marić’s book. Moreover, it reveals new relations
among various results, and revise some of them.

In view of the main aim of this text, we cannot give a complete treatment with
all details. We rather focus on presenting a wide variety of methods which shows
how powerful tool regular variation is. For reference purposes we present brief
comprehensive surveys of sub-themes.

The first chapter summarizes useful information about regularly varying func-
tions and related concepts. Our style of treatment with this topic is affected by
requirements on applications in differential equations.

Although this text is focused on nonlinear equations, there is a big part (Chap-
ter 2) which deals with linear differential equations. We offer a comprehensive
survey of the results in which linear differential equations are studied in the frame-
work of regular variation. Proofs are given only exceptionally, but we present
many comments which sometimes include a description of the main ideas. The
objective of this chapter is multiple. Some of the linear results are used in the
nonlinear theory, thus we can easily refer them. Some of the results are extended
to a nonlinear case, thus we can easily make a comparison; at the same time, some
of the statements in Chapter 2 may serve as a motivation for an extension (which
has not been made yet) to a nonlinear case. Moreover, our survey includes also the
results which are not contained in the above mentioned Marić’s book (especially
the recent ones), and we point out relations among various results.
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Chapter 3 deals with second-order half-linear differential equations in the
framework of regular variation. The most of the results can be understood as
a half-linear extension of some of the statements from Chapter 2. But this part
offers more, especially as far as the methods are concerned. Indeed, many steps in
the proofs require a quite new approach or at least a highly nontrivial modification
comparing with the existing linear case.

Emden-Fowler type equations are examined in Chapter 4. We consider various
types of such objects, second order equations, higher order equations, but also
systems. Older as well as recent results are presented. Concerning recent results,
because of their big amount, we give only a brief (but quite comprehensive) survey
which is followed by a detailed description of several selected results. We try to
make make a selection in such a way which shows a variety of typical approaches.

Chapter 5 is devoted to investigation of some other nonlinear differential equa-
tions where the theory of regular variation has been shown to be helpful. We deal
with equations which involve a generalized Laplacian, partial differential equa-
tions, a class of third order nonlinear equations, perturbed first order equations,
and second order nearly linear equations.

The last chapter briefly discusses utilization of regular variation in some other
differential (or integral) equations; among others, equations with deviating argu-
ments are mentioned. Further, it offers a short survey of the literature devoted to
examination of difference equations, q-difference equations, and dynamic equa-
tions on time scales in the framework of regular variation.

Preparation of this text was supported by the project A-Math-Net (Applied
Mathematics Knowledge Transfer Network), No. CZ.1.07/2.4.00/17.0100.

I would like to express my thanks to Robert Mařı́k and Marek Sas for reading
the manuscript and useful comments.

Pdf version of this text can be found on http://www.amathnet.cz/ or on
users.math.cas.cz/˜rehak/ndefrv.

Pavel Řehák
Brno, February 2014
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Notation and convention

◦ RV(ϑ): regularly varying functions (at infinity) of index ϑ [Section 1.1]
◦ SV: slowly varying functions (at infinity) [Section 1.1]
◦ RB: regularly bounded functions (at infinity) [Section 1.1]
◦ RPV(±∞): rapidly varying functions (at infinity) of index ±∞ [Section 1.1]
◦ NRV(ϑ): normalized regularly varying functions (at infinity) of index ϑ [Sec-

tion 1.1]
◦ NSV(ϑ): normalized slowly varying functions (at infinity) of index ϑ [Sec-

tion 1.1]
◦ tr-RV(ϑ): trivial regularly varying functions (at infinity) of index ϑ [Section 1.1]
◦ SV0: slowly varying functions at zero, similarly for RV0(ϑ), RPV0(±), RB0,

tr-RV0(ϑ) [Section 1.1]
◦ RV: the class of all regularly varying functions (at infinity), similarly for RV0,
RPV, RPV0, tr-RV tr-RV0;
“RV” sometimes may mean the abbreviation of “regularly varying”, similarly
for SV, RPV, RB etc. [Section 1.1]

◦ Karamata functions: RV ∪ RPV [Section 1.1]
◦ f←: generalized inverse of f [Section 1.1]
◦ Π(w): class Π in the de Haan sense with auxiliary function w [Section 1.2]
◦ Γ(w): class Γ in the de Haan sense with auxiliary function w [Section 1.2]
◦ ΠR2(w, z): Omey-Willekens type functions [Section 1.2]
◦ BSV: Beurling slowly varying functions [Section 1.2]
◦ SN : self-neglecting functions [Section 1.2]
◦ RVω(ϑ): (generalized) regularly varying functions (at infinity) with respect to
ω of index ϑ, similarly for SVω, RPVω(±∞), RBω,NRVω [Subsection 1.3.1]

◦ L f : slowly varying component of f ∈ RV, i.e., L f (t) = f (t)/tϑ for f ∈ RV(ϑ).
◦ ∼,�, o,O: For eventually positive functions f , g, we denote:

f (t) ∼ g(t) if limt→∞ f (t)/g(t) = 1,
f (t) � g(t) if ∃c1, c2 ∈ (0,∞) s. t. c1g(t) ≤ f (t) ≤ c2g(t) for large t,
f (t) = o(g(t)) if limt→∞ f (t)/g(t) = 0,
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f (t) = O(g(t)) if ∃c ∈ (0,∞) s. t. f (t) ≤ cg(t) for large t.

◦ We adopt the usual conventions:
∏k−1

j=k u j = 1 and
∑k−1

j=k u j = 0.
◦ Φ,Φλ: The notation Φ(u) is typically used in connection with half-linear equa-

tions and means Φ(u) = |u|α−1 sgn u with α > 1. The notation Φλ(u) is typically
used in connection with Emden-Fowler type equations and means Φλ(u) =
|u|λ sgn u with λ > 0.
Notice that the powers are shifted by 1, but since α starts from 1 while λ starts
from 0, the functions are practically the same. We decide to use such convention
in accordance with some literature.



Chapter 1
Regular variation

The subject of regular variation as we use the term today was initiated by Jovan
Karamata in a famous paper of 1930 [74], see also [73, 75], though preliminary or
partial treatments may be found in earlier work of Landau in 1911, Valiron in 1913,
Pólya in 1917, Schmidt in 1925, and others.

In its basic form, regular variation may be viewed as the study of relations such
as

f (λt)
f (t)

→ g(λ) ∈ (0,∞) (t→∞) ∀λ > 0,

together with its numerous ramifications. This study is referred to as Karamata
theory. More general than the relation above is

f (λt) − f (t)
g(t)

→ h(λ) ∈ R (t→∞) ∀λ > 0.

The study of relations of this kind is referred to as de Haan theory.
Mathematically, regular variation is essentially a field in classical real variable

theory, together with its applications in integral transforms – Tauberian theorems,
probability theory, analytic number theory, complex analysis, differential equa-
tions, and elsewhere.

Our style of dealing with regular variation in this chapter is designed for the
purpose to study asymptotic behavior of differential equations.

A quite comprehensive treatment of regular variation can be found in the book
by Bingham, Goldie, and Teugels [14]; much of material presented in this chapter
can be found (and is proved) in that book. Other main sources for this chapter are
the book by Seneta [156], the book by Geluk and de Haan [47], and the thesis by
de Haan [50]. Several useful concepts and statements are taken from some papers
on differential equations.
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14 Section 1.1

1.1 Karamata theory

1.1.1 Basic concepts

We start with two essential definitions.

Definition 1.1. A measurable function f : [a,∞)→ (0,∞) is called regularly varying
(at infinity) of index ϑ if

lim
t→∞

f (λt)
f (t)

= λϑ (1.1)

for every λ > 0; we write f ∈ RV(ϑ). The class of all regularly varying functions
is denoted as

RV =
⋃
ϑ∈R

RV(ϑ).

Definition 1.2. A measurable function L : [a,∞) → (0,∞) is called slowly varying
(at infinity) if

lim
t→∞

L(λt)
L(t)

= 1; (1.2)

we write L ∈ SV.

A slowly varying function is customarily denoted by L because of the first letter
of the French “lentement” which means “slowly”; note that the foundation papers
by Karamata were written in French.

It is clear that SV = RV(0). Consequently, the set of slowly varying functions
forms a subset of the set of regularly varying ones. This however might be some-
how misleading statement, since the class of slowly varying functions is the one
which presents itself, due to wealth of interesting properties, as a major novelty in
the classical analysis and applications. In the sequel the term “regularly varying
functions” sometimes will include the slowly varying ones and sometimes not.
The context, however, will prevent any ambiguity.

It is known that the conditions in the definition of RV functions can be weak-
ened. Indeed, the limit relation in (1.1) is sufficient to hold only for λ in a set of
positive measure and then the regular variation follows. Moreover, if the limit

lim
t→∞

f (λt)
f (t)

= g(λ) ∈ (0,∞)

exists for λ in a set of positive measure, then g necessarily takes the form g(λ) = λϑ,
where ϑ is some real number.

It is easy to show that f ∈ RV(ϑ), ϑ ∈ R, if and only if it can be written in the
form

f (t) = tϑL(t), where L ∈ SV. (1.3)

Thus, for most purposes, to study regular variation, it suffices to study the prop-
erties of slowly varying functions.
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Here are some examples of slowly varying functions:

L(t) =

n∏
i=1

(lni t)µi , where lni t = ln lni−1 t and µi ∈ R,

L(t) = exp

 n∏
i=1

(lni t)νi

 , where 0 < νi < 1,

L(t) = 2 + sin(ln2 t),
L(t) = (ln Γ(t))/t,

L(t) =
1
t

∫ t

a

1
ln s

ds,

L(t) = exp
{
(ln t)

1
3 cos(ln t)

1
3
}
.

The last example shows the SV function which exhibits “infinite oscillation”, i.e.,
lim inft→∞ L(t) = 0, lim supt→∞ L(t) = ∞. This phenomenon can be somewhat in a
contrast with the intuitive notion of a “slowly varying” behavior and it reveals that
the class RV includes a wide variety of functions. In particular, slowly varying
functions do not need to be monotone eventually. It is clear that the power function
tϑ is a trivial example of regularly varying function (of index ϑ), but for ϑ , 0, we
have tϑ < SV. The exponential functions exp t, exp(−t) are not regularly varying
at all. But, for example, 1 + exp(−t) is slowly varying. Undamped oscillatory
functions such as 2 + sin t are not slowly or regularly varying. It is interesting to
observe that while 2 + sin(ln t) is not slowly varying, the function 2 + sin(ln2 t) is
slowly varying.

Some authors speak about the class of trivial regularly varying function of index
ϑ, we write tr-RV(ϑ), where f ∈ tr-RV(ϑ) if

f (t) ∼ Ctϑ as t→∞,

C being some positive constant; we consider a positive measurable f . We denote

tr-RV =
⋃
ϑ∈R

tr-RV(ϑ).

We have, f ∈ tr-RV(ϑ), if and only if

f (t) = tϑh(t) where h(t) ∼ C ∈ (0,∞) as t→∞,

cf. (1.3). It is clear that tr-RV ⊂ RV. Thus, regular variation of a function can be
understood as a (one-sided, local) asymptotic property which arises out of trying
to extend in a logical and useful manner the class of functions whose asymptotic
behavior is that of a power function, to functions where asymptotic behavior is
that of a power function multiplied by a factor which varies “more slowly” than a
power function. As examples of slowly varying functions show, such an extension
is far from being trivial.
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We have defined regular variation at infinity. Of course, this is not the only
possibility. A measurable function f : (0, a]→ (0,∞) is said to be regularly varying
at zero of index ϑ if limt→0+

f (λt)
f (t) = λϑ for every λ > 0; we write f ∈ RV0(ϑ). Since

regular variation of f (·) at zero of index ϑ means in fact regular variation of f (1/t)
at infinity of index −ϑ, properties of RV0 functions can be easily deduced from
theory of RV functions. Regular variation can now be defined at any finite point
by shifting the origin of the function to this point. It is thus apparent that it suffices
to develop the theory of regular variation at infinity, which we shall do, frequently
omitting the words “at infinity” in the sequel. For example, − ln t is slowly varying
at t = 0+, ln t is slowly varying at t = 1+, − ln t is slowly varying at t = 1−, and
− ln(1 − t) is slowly varying at t = 1.

In connection with investigation of solutions to some differential equations,
the concept of nearly regularly varying functions was introduced: If a positive
continuous function f satisfies f (t) � g(t) as t→ ∞ for some g ∈ RV(ϑ), then f is
called a nearly regularly varying function of index ϑ.

1.1.2 Uniform convergence and representation

The following result (the so-called Uniform Convergence Theorem) is one of the
most fundamental theorems in the theory. Many important properties of RV
functions follow from it.

Theorem 1.1. If f ∈ RV(ϑ), then the relation (1.1) (and so (1.2)) holds uniformly on
each compact λ-set in (0,∞).

The second fundamental result is the following Representation Theorem. It
follows from the previous result and vice versa.

Theorem 1.2. A function L is slowly varying if and only if it has the form

L(t) = ϕ(t) exp
{∫ t

a

ψ(s)
s

ds
}
, (1.4)

t ≥ a, for some a > 0, where ϕ,ψ are measurable with limt→∞ ϕ(t) = C ∈ (0,∞) and
limt→∞ ψ(t) = 0.

Since L, ϕ, ψ may be altered at will on finite intervals, the value of a is unim-
portant; if a = 0 one can take ψ ≡ 0 on a neighborhood of 0 to avoid divergence of
the integral at the origin. In view of (1.3), a function f ∈ RV(ϑ) may be written as

f (t) = tϑϕ(t) exp
{∫ t

a

ψ(s)
s

ds
}
, (1.5)

where ϕ and ψ are as in the theorem. Alternatively, f ∈ RV(ϑ) if and only if it has
the representation

f (t) = ϕ(t) exp
{∫ t

a

δ(s)
s

ds
}
, (1.6)
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where δ is measurable with limt→∞ δ(t) = ϑ.
The Karamata representation (1.4) is essentially non-unique: within limits,

one may always adjust one of ϕ(·), ψ(·), making a compensating adjustment to
the other. It turns out that the function ψ may be arbitrarily smooth, but the
smoothness properties attainable for ϕ ale limited by those present in L. However,
replacing ϕ(t) by its limit C ∈ (0,∞), we obtain a SV function which is asymptotic
to the original one, but with much enhanced properties; this topic will be discussed
also later.

As already indicated above, from some points of view (for instance, the measur-
ing of scales of growth like in studying asymptotic behavior of relevant functions),
slowly varying functions are of interest only to within an asymptotic equivalence.
We then lose nothing by restricting attention to the case ϕ(t) ≡ C in (1.4) or (1.5) or
(1.6). The following definition is pertinent to this situation.

Definition 1.3. The regularly varying function of index ϑ

f (t) = tϑC exp
{∫ t

a

ψ(s)
s

ds
}
, (1.7)

limt→∞ ψ(t) = 0, C ∈ (0,∞), is called normalized; we write f ∈ NRV(ϑ). The set of
normalized slowly varying functions, i.e.,NRV(0), is denoted asNSV.

For L ∈ NSV, ψ(t) = tL′(t)/L(t) almost everywhere. Conversely, given a
function L with ψ(t) := tL′(t)/L(t) continuous and o(1) at infinity, we may integrate
to obtain (1.7), showing L to be normalized slowly varying.

The class NSV coincides with the so-called Zygmund class which is defined
as follows: A positive measurable function f belongs to the Zygmund class if, for
every ϑ > 0,

tϑ f (t) is ultimately increasing and t−ϑ f (t) is ultimately decreasing.

1.1.3 Karamata theorem

As we will see later, the results of this subsection are extremely useful in applica-
tions to the theory of differential equations.

Theorem 1.3 (Karamata’s theorem; direct half). If L ∈ SV, then∫
∞

t
sζL(s) ds ∼

1
−ζ − 1

tζ+1L(t) (1.8)

provided ζ < −1, and ∫ t

a
sζL(s) ds ∼

1
ζ + 1

tζ+1L(t) (1.9)

provided ζ > −1. The integral
∫
∞

a L(s)/s ds may or may not converge. The function

L̃(t) =

∫
∞

t

L(s)
s

ds resp. L̃(t) =

∫ t

a

L(s)
s

ds (1.10)
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is a new SV function and L(t)/L̃(t)→ 0 as t→∞.

We shall see in Section 1.2 that actually the integral in (1.10) is, more precisely,
a de Haan function, to be defined in that section. For later use, it can be convenient
to write the above theorem in a slightly different form.

Theorem 1.4. Let f ∈ RV(ζ) and be locally bounded in [a,∞). Then
(i) For any σ < −(ζ + 1) (and for σ = −(ζ + 1) if

∫
∞

a s−(ζ+1) f (s) ds < ∞),

tσ+1 f (t)
/ ∫ ∞

t
sσ f (s) ds→ −(σ + ζ + 1) as t→∞;

(ii) for any σ ≥ −(ζ + 1),

tσ+1 f (t)
/ ∫ t

a
sσ f (s) ds→ σ + ζ + 1 as t→∞.

The above theorems tell us in detail howSV functions behave when multiplied
by powers and integrated. It is a remarkable fact that such behavior can only arise
in the case of regular variation.

Theorem 1.5 (Karamata’s theorem; converse half). Let f be positive and locally
integrable in [a,∞).

(i) If for some σ < −(ζ + 1),

tσ+1 f (t)
/ ∫ ∞

t
sσ f (s) ds→ −(σ + ζ + 1) as t→∞,

then f ∈ RV(ζ). (ii) If for some σ > −(ζ + 1),

tσ+1 f (t)
/ ∫ t

a
sσ f (s) ds→ σ + ζ + 1 as t→∞,

then f ∈ RV(ζ).

1.1.4 Monotonicity

Various aspects of the theory of regular variation are simplified if the functions in
questions are assumed monotone. For instance:

◦ If L is eventually positive and monotone and there exists λ0 ∈ (0,∞) \ {1}with

lim
t→∞

L(λ0t)
L(t)

= 1,

then L ∈ SV.
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◦ If f is eventually positive and monotone and

lim
t→∞

f (λt)
f (t)

= g(λ) ∈ (0,∞)

for all λ in some dense subset of (0,∞) or just for λ = λ1, λ2 with (lnλ1)/ lnλ2
finite and irrational, then f ∈ RV.

◦ A monotone positive function f is RV if and only if there exist two sequences
{cn} and {an} of positive numbers with

lim
n→∞

cn+1

cn
= 1, lim

n→∞
an = ∞

such that for all positive λ
lim
n→∞

cn f (λan)

exists, is positive and finite.

1.1.5 Further selected properties of RV functions

◦ If f ∈ RV(ϑ), then ln f (t)/ ln t → ϑ as t → ∞. It then clearly implies that
limt→∞ f (t) = 0 provided ϑ < 0, and limt→∞ f (t) = ∞ provided ϑ > 0.

◦ If f ∈ RV(ϑ), then f α ∈ RV(αϑ) for every α ∈ R.

◦ If fi ∈ RV(ϑi), i = 1, 2, f2(t)→∞ as t→∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2).

◦ If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2}).

◦ If fi ∈ RV(ϑi), i = 1, 2, then f1 f2 ∈ RV(ϑ1 + ϑ2).

◦ If f1, . . . , fn ∈ RV, n ∈ N, and R(x1, . . . , xn) is a rational function with positive
coefficients, then R( f1, . . . , fn) ∈ RV.

◦ If L ∈ SV and ϑ > 0, then tϑL(t)→∞, t−ϑL(t)→ 0 as t→∞.

◦ Let f be eventually positive and differentiable, and let

lim
t→∞

t f ′(t)
f (t)

= ϑ.

Then f ∈ NRV(ϑ).

◦ If f ∈ RV(ϑ) with ϑ ≤ 0 and f (t) =
∫
∞

t g(s) ds with g nonincreasing, then

−t f ′(t)
f (t)

=
tg(t)
f (t)
→ −ϑ as t→∞.
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◦ If f ∈ RV(ϑ) with ϑ ≥ 0 and f (t) = f (t0) +
∫ t

t0
g(s) ds with g monotone, then

t f ′(t)
f (t)

=
tg(t)
f (t)
→ ϑ as t→∞.

◦ (Similar to the above ones but much earlier results.) If the derivative of L ∈ SV
is monotone, then tL′(t)/L(t)→ 0 as t→∞.

Suppose that F ∈ RV(ϑ) with ϑ ∈ R and that there exists a monotone function f
such that for all positive t, F(t) =

∫ t
0 f (s) ds. Then

lim
t→∞

t f (t)
F(t)

= ϑ.

Hence, for ϑ , 0, it holds f sgnϑ ∈ RV(ϑ − 1).

◦ (Almost monotonicity) For a positive measurable function L it holds: L ∈ SV
if and only if, for every ϑ > 0, there exist a (regularly varying) nondecreasing
function F and a (regularly varying) nonincreasing function G with

tϑL(t) ∼ F(t) t−ϑL(t) ∼ G(t) as t→∞.

In particular, if L ∈ SV and ϑ > 0, tϑL(t) is asymptotic to a nondecreasing
function, t−ϑL(t) to a nonincreasing one. Or, a regularly varying function of
index ϑ , 0 is almost monotone. Recall that a positive function f is called
almost increasing on [a,∞) if for some constant M > 0, f (s) ≥ f (Mt), s ≥ t ≥ a.
We may write f (t) = O(infs≥t f (t)) or even f (t) � infs≥t f (s). Similarly we define
an almost decreasing function f ; then we have f (t) � sups≥t f (t).

◦ (Asymptotic inversion) If g ∈ RV(ϑ) with ϑ > 0, then there exists g ∈ RV(1/ϑ)
with

f (g(t)) ∼ g( f (t)) ∼ t as t→∞.

Here g (an “asymptotic inverse” of f ) is determined uniquely up to asymptotic
equivalence. One version of g is the generalized inverse

f←(t) := inf{s ∈ [a,∞) : f (s) > t}.

◦ (de Bruijn conjugacy) If L ∈ SV, there exists L#
∈ SV, unique up to asymptotic

equivalence, with

L(t)L#(tL(t))→ 1, L#(t)L(tL#(t))→ 1

as t → ∞. Then L##
∼ L. The function L# is the Bruijn conjugate of L; (L,L#) is a

conjugate pair.
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◦ (Smooth variation) First we give definition of the class SRV: A positive function
varies smoothly with index ϑ ∈ R, we write f ∈ SRV(ϑ), if h(t) := ln f (et) is C∞,
and

h′(t)→ ϑ, h(n)(t)→ 0 (n = 2, 3, . . . ) as t→∞. (1.11)

If f ∈ RV(ϑ), then there exist f1, f2 ∈ SRV(ϑ) with f1 ∼ f2 and f1 ≤ f ≤ f2
on some neighborhood of infinity. In particular, if f ∈ RV(ϑ), there exists
g ∈ SRV(ϑ) with g ∼ f . Thus for many purposes it suffices to restrict attention
to the smoothly varying case.

Note that if f ∈ SRV(ϑ), then t f ′(t)/ f (t) = h′(ln t) → ϑ and is continuous,
whence f ∈ NRV(ϑ). Condition (1.11) is equivalent to

tn f (n)(t)
f (t)

→ ϑ(ϑ − 1) · · · (ϑ − n + 1),

n = 1, 2, . . . , as t → ∞. Smooth variation is well adapted to the processes of
integration and differentiation. If f ∈ SRV(ϑ), ϑ , 0, then | f ′| ∈ SRV(ϑ − 1).
If f ∈ SRV(ϑ), then for ϑ > −1,

∫ t
a f (s) ds ∈ SRV(ϑ + 1), and for ϑ < −1,∫

∞

t f (s) ds ∈ SRV(ϑ + 1).

Note that if L ∈ SV, then there exists another, infinitely differentiable, SV
function L1 such that L1(t) ∼ L(t) as t→∞ and L1(n) = L(n) for all large n ∈N.

If f ∈ SRV(ϑ) and ϑ < {0, 1, 2, . . . }, each derivative will ultimately have constant
sign, so | f (n)

| ∈ SRV(ϑ − n). In particular, for ϑ > 1 the first [ϑ] − 1 derivatives
will be ultimately convex and the [ϑ]-th derivative ultimately concave. A related
result is the following: If f ∈ RV(ϑ), ϑ < {0, 1, 2, . . . }, then there exists a C∞-
function g, all of whose derivatives are monotone, with f (t) ∼ g(t).

◦ If f ∈ RV(ϑ), ϑ ∈ R, then for all sequences {an}, {bn} of positive numbers with
limn→∞ an = limn→∞ bn = ∞ and limn→∞ an/bn = λ ∈ (0,∞), we have

lim
n→∞

f (an)
f (bn)

= λϑ. (1.12)

If ϑ ∈ R \ {0}, the conclusion is also true for λ = 0 and λ = ∞.

◦ (See [2].) Let L ∈ SV and assume that
∫
∞

a tη| f (t)|dt converge for some η > 0.
Then

∫
∞

a f (t)L(xt) dt exists and∫
∞

a
f (t)L(xt) dt ∼ L(x)

∫
∞

a
f (t) dt

as x→∞.



22 Section 1.1

1.1.6 Regularly bounded functions

The main limitation of the theory so far developed is the need to assume the
existence of the limit limt→∞

f (λt)
f (t) . A natural and useful generalization of regular

variation is the concept of regularly bounded functions (or O-regularly varying
functions) introduced by Avakumović in 1935.

Definition 1.4. A measurable function f : [a,∞)→ (0,∞) is called regularly bounded
if

0 < lim inf
t→∞

f (λt)
f (t)

≤ lim sup
t→∞

f (λt)
f (t)

< ∞ for every λ ≥ 1; (1.13)

we write f ∈ RB.

Equivalently, f ∈ RB can be defined via lim supt→∞
f (λt)
f (t) < ∞ for all λ > 0.

The set of regularly bounded functions at zero (i.e., we take the limit as t → 0) is
denoted as RB0.

Clearly any RV function is RB. Any positive and measurable function which
is bounded away from both 0 and ∞ satisfies this definition; thus various simple
oscillating functions noted hitherto as not being regularly varying, such as 2+ sin t
and tγ(1 + α sin(ln t)) with α small, are regularly bounded, though et still not. It is
evident that if measurability is strengthened to monotonicity one of the bounds in
m ≤ f (λt)/ f (t) ≤M (such inequalities can alternatively defineRB) is automatically
satisfied. Further, for instance, if f is nondecreasing, instead of lim supt→∞

f (λt)
f (t) <

∞ for all λ > 1, it then is sufficient to require lim supt→∞
f (λ0t)

f (t) < ∞ for some λ0 > 1.

Here are selected properties of RB functions:

◦ (Uniform convergence theorem forRB) If f ∈ RB, then, for every Λ > 1, (1.13) holds
uniformly in λ ∈ [1,Λ].

◦ (Representation theorem for RB) A function f is regularly bounded if and only if
it has the representation

f (t) = exp
{
ξ(t) +

∫ t

a

η(s)
s

ds
}
,

t ≥ a, where ξ and η are bounded and measurable on [a,∞). If ξ(t) ≡ const in the
representation, then f is referred to as a normalized regularly bounded function.

◦ A positive continuous function f is regularly bounded if and only if there exist
γ, δ ∈ R, γ > δ, such that tγ f (t) is eventually almost increasing and tδ f (t) is
eventually almost decreasing.

◦ It holds, f ∈ RB if and only if there exists δ ∈ R such that∫ t

a
sδ−1 f (s) ds � tδ f (t) as t→∞.
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◦ It holds, f ∈ RB if and only if there exists γ ∈ R such that∫
∞

t
sγ−1 f (s) ds � tγ f (t) as t→∞.

1.1.7 Rapid variation

We proceed with another problem which naturally arises out: We examine func-
tions for which the limit in (1.1) attains the extreme values.

Definition 1.5. A measurable function f : [a,∞) → (0,∞) is called rapidly varying
of index∞, we write f ∈ RPV(∞), if

lim
t→∞

f (λt)
f (t)

=

0 for 0 < λ < 1,
∞ for λ > 1,

(1.14)

and is called rapidly varying of index −∞, we write f ∈ RPV(−∞), if

lim
t→∞

f (λt)
f (t)

=

∞ for 0 < λ < 1,
0 for λ > 1.

(1.15)

The class of all rapidly varying solutions is denoted as RPV.

While RV functions behaved like power functions (up to a factor which varies
“more slowly”), RPV functions have a behavior close to that of exponential func-
tions. In particular, et

∈ RPV(∞) and e−t
∈ RPV(−∞).

If, for λ > 0, we adopt the convention

λ∞ =


0 for λ < 1
1 for λ = 1
∞ for λ > 1

λ−∞ =


∞ for λ < 1
1 for λ = 1
0 for λ > 1

then regular and rapid variation of f can be expressed in a unique formula
limt→∞ f (λt)/ f (t) = λϑ, where ϑ ∈ R ∪ {±∞}.

We now present selected properties ofRPV functions. Notice that some of the
results for regularly varying functions have partial analogues for rapid variation.

◦ (Uniform convergence theorem for RPV) If f ∈ RPV(∞), then (1.14) holds uni-
formly in λ over all intervals (0,M−1) and (M,∞) for every M > 1.

◦ To establish (1.14), only f (λt)/ f (t)→∞ for λ > 1 has to be proved. Similarly for
(1.15).

◦ Let f be positive and differentiable, and let there exist

lim
t→∞

t f ′(t)
f (t)

= ±∞.

Then f ∈ RPV.
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◦ If f ∈ RPV with f ′ increasing and limt→∞ f (t) = 0, then

lim
t→∞

−t f ′(t)
f (t)

= ∞.

◦ There is a connection between a slowly and rapidly varying function. Let f be
positive, locally bounded, and (globally) unbounded on [0,∞). If f ∈ SV, then
f← ∈ RPV(∞) (in fact, RPV(∞) can be replaced here by a certain subclass, see
[14, Theorem 2.4.7]). If f ∈ RPV(∞), then f← ∈ SV.

◦ If ϑ = ±∞, the conclusion (1.12) is true for monotone function f and c ∈ ([0,∞)∪
{∞}) \ {1}.

◦ Suppose the function f : (0,∞) → (0,∞) is nonincreasing. If f ∈ RPV(−∞),
then for all ϑ ∈ R,

∫
∞

1 tϑ f (t) dt < ∞ and

lim
t→∞

tϑ+1 f (t)∫
∞

t sϑ f (s) ds
= ∞. (1.16)

If for some ϑ ∈ R the integral
∫
∞

a tϑ f (t) dt converges and (1.16) holds, then
f ∈ RPV(−∞).

Suppose the function f : (0,∞)→ (0,∞) is nondecreasing. If f ∈ RPV(∞), then

for all ϑ ∈ R for which the integral
∫ 1

0 tϑ f (t) dt converges, we have

lim
t→∞

tϑ+1 f (t)∫ t
0 sϑ f (s) ds

= ∞. (1.17)

If for some ϑ ∈ R the integral
∫ 1

0 tϑ f (t) dt converges and (1.17) holds, then
f ∈ RPV(∞).

1.2 De Haan theory

In this section we work with somehow more general relations than the one defining
regular variation, namely such as (h(λt) − h(t))/w(t) → k(λ) as t → ∞. Note that
functions satisfying this relation (which leads to the class Π) were introduced by
Bojanić and Karamata in 1963. They were rediscovered, and definitely studied
by de Haan in his thesis of 1970 [50], who introduced and studied related class Γ
which is also discussed below.

1.2.1 Class Π

The Karamata theory considered so far concerns asymptotic relations such as
f (λt)/ f (t)→ g(λ) as t→∞. Writing h = ln f and k = ln g, this becomes

h(λt) − h(t)→ k(λ) as t→∞.



Chapter 1 25

One can work instead with the more general relation

h(λt) − h(t)
w(t)

→ k(λ) as t→∞, for all λ > 0, (1.18)

where w : (0,∞) → (0,∞) is called auxiliary function of f . By that a new class of
functions — de Haan class — is introduced, see de Haan [50] and Geluk, de Haan
[47]. The case w ≡ 1 leads to the Karamata case.

First note one context in which such relations naturally arise, namely the “lim-
iting case” in the Karamata theorem. Here the converse half yields no assertion,
while the direct half tells us that if L varies slowly and h(t) :=

∫ t
a

L(s)
s ds, then

h(t)
L(t) → ∞. Much more precise links between L and h exist, however, involving
differencing, as the Uniform Convergence Theorem yields

h(λt) − h(t)
L(t)

=

∫ λ

1

L(tu)
L(t)u

du→
∫ λ

1

du
u

= lnλ

as t→∞.
The denominator w in (1.18) needs in general to be taken regularly varying. If

w ∈ RV(ϑ), then k(λ), if it exists finite for all λ > 0, has to be of the form

k(λ) =

lnλ for ϑ = 0,
λϑ−1
ϑ for ϑ , 0.

If ϑ , 0, nothing new is obtained (essentially we get regular variation). But ϑ = 0
leads to a new useful class. This class is, after taking absolute values, a proper
subclass of the Karamata class SV.

Definition 1.6. A measurable function f ∈ [a,∞)→ R is said to belong to the class
Π if there exists a function w : (0,∞)→ (0,∞) such that for λ > 0

lim
t→∞

f (λt) − f (t)
w(t)

= lnλ; (1.19)

we write f ∈ Π or f ∈ Π(w). The function w is called an auxiliary function for f .

Note that de Haan [50] studied the class ΠC(w) of SV functions for which a
positive and measurable function w exists such that for all λ > 0,

lim
t→∞

f (λt) − f (t)
w(t)

= C lnλ. (1.20)

If C , 0, then w must be SV. If C = 0 the slow variation of w is assumed.
Bingham et al. [14] studied classes of functions satisfying general asymptotic
relations related to (1.20). For instance, for w ∈ RV(ϑ), they consider the class of
measurable f satisfying for all λ ≥ 1

lim
t→∞

f (λt) − f (t)
w(t)

= Ckϑ(λ), where kϑ(λ) =

∫ λ

1
uϑ−1du.
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The resulting theory (de Haan theory) is both a direct generalization of the
Karamata theory above and what is needed to fill certain gaps, or boundary cases,
in Karamata’s main theorem. The term “second-order theory” is sometimes used
for this study. The original motivation was probabilistic. De Haan class presents
itself as very fruitful in various applications; as we will see later they include
applications in differential equations.

Let us give several examples. The functions f defined by

f (t) = ln t + o(1),

f (t) = (ln t)α(ln2 t)β + o(ln t)α−1, α > 0, β ∈ R,

f (t) = exp{(ln t)γ} + o(ln t)γ−1 exp{(ln t)γ}, 0 < γ < 1,

f (t) = t−1 ln Γ(t) + o(1)

are in Π. The function
f (t) = 2 ln t + sin ln t

is in SV, but not in Π.

Now we present selected properties of functions in the class Π.

◦ If f ∈ Π, then for 0 < c < d < ∞ relation (1.19) holds uniformly for λ ∈ [c, d].

◦ Auxiliary function is unique up to asymptotic equivalence.

◦ The statements f ∈ Π and

lim
t→∞

f (λt) − f (t)

f (t) − 1
t

∫ t
a f (s) ds

= lnλ

for λ > 0 are equivalent.

◦ The statements f ∈ Π and there exists L ∈ SV such that

f (t) = L(t) +

∫ t

a

L(s)
s

ds (1.21)

are equivalent.

◦ If f satisfies (1.21), then f ∈ Π(L). Hence

L(t) ∼ f (t) −
1
t

∫ t

a
f (s) ds (1.22)

as t→∞. If f ∈ Π(L) is integrable on finite intervals of (0,∞), then (1.22) holds.

◦ If f ∈ Π, then limt→∞ f (t) =: f (∞) ≤ ∞ exists. If the limit is infinite, then f ∈ SV.
If the limit is finite, then f (∞) − f (t) ∈ SV.



Chapter 1 27

◦ If− fi ∈ Π(wi), where fi is eventually positive, i = 1, 2, then− f1 f2 ∈ Π( f1w2+ f2w1).

◦ If f ∈ Π(w), g is measurable and { f (t) − g(t)}/w(t) → c ∈ R as t → ∞, then
g ∈ Π(w).

◦ If f ∈ Π(w), then for any ε > 0 there exist s0,M ∈ (0,∞) such that for s ≥ s0, t ≥ 1,∣∣∣∣∣ f (st) − f (s)
w(s)

∣∣∣∣∣ ≤Mtε.

For further properties see [14, 47, 50]. There are another classes, closely related
to Π, which can also be important for our purposes. Geluk in [44] introduces
Π-regular variation:

f ∈ ΠRV(ϑ) if an only if
f (t)
tϑ
∈ Π.

Further, in Omey, Willekens [134], the following class of functions was introduced.
As we will see, it opens further possibilities in obtaining more precise information
about certain solutions of certain differential equations.

Definition 1.7. Let f : (0,∞) → R be measurable. If there exist measurable
functions w, z such that z ∈ SV and

f (λt) − f (t) − w(t) lnλ
z(t)

→ H(λ) as t→∞ for λ > 0,

for some function H(λ), then we write f ∈ ΠR2(w, z).

Next we present selected information about the class ΠR2(w, z).

◦ If z(t) = o(w(t)), then f ∈ ΠR2(w, z) implies that f ∈ Π.

◦ (Auxiliary concepts) Consider functions h satisfying

h(λt) − h(t) ∼ k(λ)g(t)

as t→ ∞. If g ∈ SV, the limit function k(λ) can be characterized as follows: for
each µ, λ > 0, we have

k(λµ) = k(λ) + k(µ).

Hence k(λ) = c lnλ for some real c. The corresponding class of functions h will
be denoted by ΠV(c, g). Note that h ∈ RV(ϑ) if and only if ln h ∈ ΠV(ϑ, 1). If
c , 1, the class ΠV(c, g) is the class Π.

◦ (Representation theorem) Suppose that z ∈ SV and f is locally bounded and define

G(t) = f (t) −
1
t

∫ t

0
f (s) ds,
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t > 0. Then f ∈ ΠR2(w, z) if and only if there exists c ∈ R such that G ∈ ΠV(c, z).
Moreover, if f ∈ ΠR2(w, z), then

lim
t→∞

w(t) − G(t)
z(t)

= c0

exists and f ∈ ΠR2(G, z) with limit function H(λ) = c lnλ + 1
2 c(lnλ)2.

1.2.2 Class Γ

For RV functions (generalized) inversion gives again an RV function. For non-
decreasing unbounded functions in the class Π (which forms a proper subset of
SV) we obtain the following class by inversion; it is a useful subclass of rapidly
varying functions.

Another view of understanding is an extension of the notion of RV functions
defined by limt→∞ f (λt)/ f (t) = λϑ in the sense that we consider the class of func-
tions satisfying the following property: There exists a function g : (0,∞)→ (0,∞)
and ϑ ∈ R such that

lim
t→∞

f
(
tλg(t)

)
f (t)

= λϑ

for all positive λ. First we confine our considerations to nondecreasing functions
f and ask for a characterization of the class of functions for which this relation
holds with ϑ > 0. Without loss of generality we may take ϑ = 1 (this only involves
a trivial change in g).

It turns out to be more convenient to start with the following definition which
is a mere transformation of the one just given.

Definition 1.8. A nondecreasing function f : R → (0,∞) is said to belong to the
class Γ if there exists a function v : R→ (0,∞) such that for all λ ∈ R

lim
t→∞

f (t + λv(t))
f (t)

= eλ; (1.23)

we write f ∈ Γ or f ∈ Γ(v). The function v is called an auxiliary function for f .

The following functions satisfy (1.23) with the given auxiliary functions v:

f (t) = exp(tα) for fixed α > 0 with v(t) =

1 for t ≤ 0
t1−α/α for t > 0,

f (t) = exp(t ln t) with v(t) =

1 for t ≤ 1
1/ ln t for t > 1,

f (t) = exp(et) with v(t) = e−t.

We now give selected properties of functions in the class Γ.
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◦ If f ∈ Γ, then f ∈ RPV(∞).

◦ Relation (1.23) holds uniformly on each bounded interval.

◦ Any positive function z is an auxiliary function for f if and only if z(t) ∼ v(t) as
t→∞.

◦ An auxiliary function v in (1.23) cannot grow so fast: v(t)/t→ 0 as t→∞.

◦ If f ∈ Π(w) and f (∞) = ∞, then f← ∈ Γ(v) with v(t) ∼ w( f←(t)) as t→∞.

◦ If g ∈ Γ(v) and g(∞) = ∞, then g← ∈ Π(w) with w(t) ∼ v(g←(t)) as t→∞.

◦ The statements f ∈ Γ and

lim
t→∞

f (t)
∫ t

0

∫ s
0 f (τ) dτds(∫ t

0 f (s) ds
)2 = 1

are equivalent.

◦ If f ∈ Γ, then for all positive α

lim
t→∞

∫ t
0 f α(s) ds

f α−1(t)
∫ t

0 f (s) ds
=

1
α
.

Conversely, if a positive nondecreasing function satisfies this relation for some
positive α , 1, then f ∈ Γ.

◦ (Representation) The statements f ∈ Γ and

f (t) = exp
{
η(t) +

∫ t

0

ψ(s)
ϕ(s)

ds
}
,

where η(t) → c ∈ R, ψ(t) → 1 as t → ∞, ϕ is positive, absolutely continuous
with ϕ′(t) → 0 as t → ∞, are equivalent. The auxiliary function of f may be
taken as ϕ.

◦ (Representation) The statements f ∈ Γ and

f (t) = exp
{
η(t) +

∫ t

0

1
ω(s)

ds
}
,

where η(t) → c ∈ R as t → ∞ and ω ∈ SN (SN being defined below), are
equivalent. The auxiliary function of f may be taken as ω.
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◦ If g ∈ SN (SN being defined below), then f defined by

f (t) = exp
{∫ t

0

ds
g(s)

}
satisfies f ∈ Γ(g).

◦ If f ∈ Γ has a nondecreasing positive derivative f ′, then f ′ ∈ Γ.

◦ If f ∈ Γ(v), then

v(t) ∼

∫ t
0 f (s) ds

f (t)
as t→∞.

Hence v can always be taken measurable.

◦ If f ∈ Γ(v), then v(t + λv(t)) ∼ v(t) as t → ∞ uniformly on finite intervals of R
(that is v is in the below defined class SN).

◦ If f ∈ Γ(v), then
∫ t

0 f (s) ds ∈ Γ(v).

◦ If f1 ∈ RV(ϑ) with ϑ > 0 and f2 ∈ Γ, then f1 ◦ f2 ∈ Γ.

◦ If f1 ∈ Γ and f ′2 ∈ RV(ϑ) with −1 < ϑ < ∞, then f1 ◦ f2 ∈ Γ.

◦ If f1 ∈ Γ and f ′2 ∈ Γ, then f1 ◦ f2 ∈ Γ.

◦ For a nondecreasing function f , f ∈ Γ ∪ RV if and only if

lim
t→∞

f (t)
∫ t

0

∫ s
0 f (τ) dτds(∫ t

0 f (s) ds
)2 = C. (1.24)

Under these conditions necessarily C ∈ [1/2, 1]. If C = 1, then f ∈ Γ. If C < 1,
then f ∈ RV(1/(1 − C) − 2).

We already know that Γ ⊆ RPV(∞). For an example showing that the inclusion
is strict see the proof of [14, Proposition 2.4.4].

In applications to differential equations we will also use the class Γ− defined
as follows. A function f ∈ Γ−(v) if 1/ f ∈ Γ(v). Alternatively we can define: A
function f : (0,∞)→ (0,∞) is in the class Γ(σ; v), σ being a real number and v ∈ SN
(see below), if

lim
t→∞

f (t + λv(t))
f (t)

= exp(σλ)

for all real λ. Clearly, Γ(1; v) = Γ(v) and Γ(−1, v) = Γ−(v). It holds:

If f ′ ∈ Γ(v), then lim
t→∞

f (t) = A exists, A − f (t) ∼ v(t) f (t),

and A − f (t) ∈ Γ−(v). (1.25)

The class of auxiliary functions for functions in the class Γ is an interesting class
in its own right since it can be used in either context as well.
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Definition 1.9. A measurable function f : R→ (0,∞) is Beurling slowly varying if

lim
t→∞

f (t + λ f (t))
f (t)

= 1 for all λ ∈ R; (1.26)

we write f ∈ BSV. If (1.26) holds locally uniformly in λ, then f is called self-
neglecting; we write f ∈ SN .

Here are selected properties concerning the classes BSV and SN .

◦ If f ∈ BSV is continuous, then f ∈ SN .

◦ (Representation) It holds f ∈ SN if and only if it has the representation

f (t) = ϕ(t)
∫ t

0
ψ(s) ds,

where limt→∞ ϕ(t) = 1 and ψ is continuous with limt→∞ ψ(t) = 0.

◦ If f ∈ SN , then limt→∞ f (t)/t = 0.

◦ If f ∈ BSV is continuous, then there exists g ∈ C1 such that f (t) ∼ g(t) and
g′(t)→ 0 as t→∞.

Consider f ∈ RV(ϑ), ϑ > −1. Then∫ t
0 f (s) ds

t f (t)
→

1
ϑ + 1

and

∫ t
0

∫ s
0 f (τ) dτds

t
∫ t

0 f (s) ds
→

1
ϑ + 2

as t→∞, see the Karamata theorem and (1.24). By setting

h(t) =

∫ t

0

∫ s

0
f (τ) dτds

and combining (1.1) with the above two relations we find that h satisfies the
differential equation

h(t)h′′(t) = ϕ(t)h′2(t), (1.27)

whereϕ(t)→ (ϑ+1)/(ϑ+2). This leads to the idea to start from (1.27) and study the
asymptotic behavior of nonnegative solutions of (1.27) under various conditions
on ϕ, see Omey [132]. For instance, the following holds, cf. (1.24). Suppose that h
is a nonnegative solution of (1.27) and ϕ(t)→ C ∈ R ∪ {±∞} as t→ ∞. If C < 1 or
C > 1, then h ∈ RV(β) where β = 1/(1 − C); here β = 0 if C = ±∞. If C = 1, then
h ∈ Γ(d, v) where v = |h/h′| ∈ SN and d = 1 or d = −1 depending on the sign of h′.
Second order behavior is also studied in Omey [132].

The behavior of a function f ∈ BSV is controlled by the function f itself. A
similar class of functions controlled by another function z is defined as follows
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(see e.g. [131, 133]). Suppose that z ∈ SN . A positive and measurable function f
is controlled by z if for all real λ,

f (t + λz(t))
f (t)

→ 1

as t→∞; we write f ∈ SC(z). It holds: If f ′ ∈ SC(z), then for all real λ,

f (t + λz(t)) − f (t) = (1 + o(1))λz(t) f ′(t) (1.28)

locally uniformly in λ. For other classes related to Γ see [133].

1.3 Some other related classes

1.3.1 Generalized regularly varying functions

The following type of extension of RV functions was introduced in [60]. Moti-
vation was primarily for purposes of studying differential equations. Consider a
continuously differentiable function ω which is positive and satisfies ω′(t) > 0 for
t ∈ [b,∞) and limt→∞ω(t) = ∞.

Definition 1.10. A measurable function f : [a,∞) → (0,∞) is called regularly
varying of index ϑ with respect to ω if f ◦ ω−1

∈ RV(ϑ); we write f ∈ RVω(ϑ). If
ϑ = 0, then f is called slowly varying with respect to ω; we write f ∈ SVω.

The following selected properties of generalized RV functions are mostly im-
mediate consequences of the properties of RV functions.

◦ f ∈ RVω(ϑ) if and only if f (t) = ωϑ(t)Lω(t), where Lω ∈ SVω.

◦ If Lω ∈ SVω and ϑ > 0, then ωϑ(t)Lω(t)→∞, ω−ϑ(t)Lω(t)→ 0 as t→∞.

◦ (The representation theorem): Lω ∈ SVω if and only if

Lω(t) = c(t) exp
{∫ t

a

ω′(s)
ω(s)

h(s) ds
}
, (1.29)

t ≥ a, for some a > 0, where c, h are measurable and c(t) → c ∈ (0,∞), h(t) → 0
as t → ∞. If c(t) ≡ c in (1.29), then Lω is called normalized slowly varying with
respect to ω; we write Lω ∈ NSVω. A generalized regularly varying function
f (t) = ωϑ(t)Lω(t) with Lω ∈ NSVω is called normalized regularly varying of index
ϑ with respect to ω; we write f ∈ NRVω(ϑ).

◦ Representation of a generalized RV-function can alternatively be written as
follows: f ∈ RVω(ϑ) if and only if

f (t) = c(t) exp
{∫ t

a

ω′(s)
ω(s)

δ(s) ds
}
, (1.30)

t ≥ a, for some a > 0, where c, δ are measurable and c(t)→ c ∈ (0,∞), δ(t)→ ϑ as
t→∞.
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◦ If ω(t) ∼ Kϕ(t) as t→∞ for some constant K > 0, then

RVω(ϑ) = RVϕ(ϑ)

for any ϑ ∈ R.

◦ It holds
RVωγ(ϑ) = RVω(ϑγ)

for any ϑ ∈ R and γ ∈ (0,∞).

◦ There hold RVid(ϑ) = RV(ϑ) andNRVid(ϑ) = NRV(ϑ).

It would be of interest to observe that there exists a function which is slowly
varying in the generalized sense but is not slowly varying in the sense of Karamata,
so that, roughly speaking, the class of generalized Karamata functions is larger
than that of classical Karamata functions. In fact, using the notation

exp0 t = t, expn t = exp(expn−1 t), n = 1, 2, . . . ,
ln0 t = t, lnn t = ln(lnn−1 t), n = 1, 2, . . . ,

we define the functions φn(t) and fn(t) for n ∈ Z by

φn(t) = expn t, φ−n(t) = logn t, n = 0, 1, 2, . . . ,

and
fn(t) = 2 + sinφn(t), n = 0,±1,±2, . . . .

Since φ−1
n (t) = φ−n(t) and φm ◦ φn(t) = φm+n(t) for any m,n ∈ Z, we have

fn ◦ φ−1
m (t) = fn−m(t)

for any m,n ∈ Z, from which, by taking into account the fact that

fn(t) ∈ SV for n ≤ −2 and fn(t) < SV for n ≥ −1,

we conclude that

fn(t) < SV and fn(t) ∈ SVφm if n ≥ −1 and m ≥ n + 2.

Regular boundedness is generalized as follows.

Definition 1.11. A measurable function f : [a,∞) → (0,∞) is called regularly
bounded with respect to ω if f ◦ ω−1

∈ RB; we write f ∈ RBω.

A function f belongs to RBω if and only if it has the representation

f (t) = exp
{
η(t) +

∫ t

a

ω′(s)
ω(s)

ξ(s) ds
}
,

where η and ξ are bounded measurable functions on [a,∞).
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1.3.2 Subexponential functions

Now we recal the concept of subexponential functions which have been shown
useful in the study of asymptotic properties of differential equations, and are also
somehow related to RV functions, see e.g. [5, 7].

The convolution of two appropriate functions f , g defined on [0,∞) is denoted,
as usual, by

( f ∗ g)(t) =

∫ t

0
f (t − s)g(s) ds, t ≥ 0.

Definition 1.12. Let f : [0,∞)→ (0,∞) be a continuous function. Then we say that
f is (positive) subexponential if

lim
t→∞

( f ∗ f )(t)
f (t)

= 2
∫
∞

0
f (s) ds (1.31)

(where we assume the convergence of the integral) and

lim
t→∞

sup
0≤s≤T

∣∣∣∣∣ f (t − s)
f (t)

− 1
∣∣∣∣∣ = 0 for all T > 0 (1.32)

(i.e., limt→∞ f (t − s)/ f (t) uniformly for 0 ≤ s ≤ T for all T > 0).

The nomenclature subexponential is suggested by the fact that (1.32) implies
that, for every ε > 0, f (t)eεt

→ ∞ as t → ∞, see e.g. [8]. It is also true that
limt→∞ f (t) = 0. In the definition above, condition (1.31) can be replaced by

lim
T→∞

lim sup
t→∞

1
f (t)

∫ t−T

T
f (t − s) f (s) ds = 0

and this latter condition often proves to be useful in proofs.
The properties of subexponential functions have been extensively studied, for

example, in [7, 8, 21]. Simple examples of subexponential functions are

f (t) = (1 + t)−α for α > 1,

f (t) = e−(1+t)α for 0 < α < 1,

f (t) = e−t/ ln(t+2).

The class of subexponential functions therefore includes a wide variety of functions
exhibiting polynomial and slower-than-exponential decay: nor is the slower-than-
exponential decay limited to a class of polynomially decaying functions. It is noted
in [7] that the class of (positive) subexponential functions includes all continuous,
integrable functions which are regularly varying at infinity. If g ∈ RV(ϑ) with
ϑ < −1, g is subexponential.
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1.3.3 Regular variation on various time scales

The concept of regular variation can be extended in such a way that it allows
us to study asymptotic behavior of difference equations or q-difference equations
or dynamic equations on time scales, see Section 6.2, Section 6.3, Section 6.4,
respectively. Since this text is focused on differential equations, we will be very
brief.

The concept of regularly sequences was introduced already by Karamata in
1930. In fact, two main approaches are known in the basic theory of regularly
varying sequences: the approach due to Karamata [73], based on a definition that
can be understood as a direct discrete counterpart of simple and elegant continuous
definition, and the approach due to Galambos and Seneta [43], based on purely
sequential definition.

Definition 1.13 (Karamata [73]). A positive sequence {yk}, k ∈ N, is said to be
regularly varying of index ϑ, ϑ ∈ R, if

lim
k→∞

y[λk]

yk
= λϑ for all λ > 0, (1.33)

where [u] denotes the integer part of u.

Definition 1.14 (Galambos and Seneta [43]). A positive sequence {yk},
k ∈ N, is said to be regularly varying of index ϑ, ϑ ∈ R, if there is a positive
sequence {αk} satisfying

lim
k→∞

yk

αk
= C, lim

k→∞
k
(
1 −

αk−1

αk

)
= ϑ, (1.34)

C being a positive constant.

If % = 0 in Definition 1.13 or 1.14, then {yk} is said to be slowly varying.
In Bojanić, Seneta [17], it was shown that Definition 1.13 is equivalent to Defi-

nition 1.14.
In Matucci, Řehák [119] the authors are interested in applying regularly varying

sequences to certain second order difference equations. For this purpose a slight
modification (in the equivalent sense) of Definition 1.14 is proposed there; the
latter condition in (1.34) is replaced by

lim
k→∞

k∆αk

αk
= ϑ.

In Bojanić, Seneta [17] and Galambos, Seneta [43], the so-called embedding
theorem was established (and the converse result holds as well):

Theorem 1.6. If {yk} is a regularly varying sequence, then the function R (of a real
variable), defined by R(t) = y[t], is regularly varying.
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Such a result makes it then possible to apply the continuous theory to the theory
of regularly varying sequences. However, the development of a discrete theory,
analogous to the continuous one, is not generally close, and sometimes far from
a simple imitation of arguments for regularly varying functions, as noticed and
demonstrated in Bojanić, Seneta [17]. Simply, the embedding theorem is just one of
powerful tools, but sometimes it is not immediate that from a continuous results
its discrete counterpart is easily obtained thanks to the embedding; sometimes
it is even not possible to use this tool and the discrete theory requires a specific
approach, different from the continuous one.

For further properties of regularly varying sequences and some other related
useful concepts (such as rapidly varying sequences) see e.g. [17, 25, 26, 43].

References concerning applications of regular variation in difference equations
are given in Section 6.2.

In Řehák [141], the concept of regularly varying functions on time scales (or
measure chains) was introduced; the primary purpose was to investigate dynamic
equations on time scales.

Recall that the calculus on time scales (or, more generally, on measure chains)
deals essentially with functions defined on nonempty closed subsets of R, see
Hilger’s initiating work [55] and the monograph [16] by Bohner, Peterson. Hence,
it unifies and extends usual calculus and quantum (q- or h-) calculi.

A theory of regular variation on time scales offers something more than the
embedding result, and has the following advantages: Once there is proved a result
on a general time scale, it automatically holds for the continuous and the discrete
case, without any other effort. Moreover, at the same time, the theory works also
on other time scales which may be different from the “classical” ones.

A time scale T is assumed to be unbounded above. The following definition is
motivated by a modification of the purely sequential criterion mentioned above.

Definition 1.15. A measurable function f : T→ (0,∞) is said to be regularly varying
of index ϑ, ϑ ∈ R, if there exists a positive rd-continuously delta differentiable
function α satisfying

f (t) ∼ Cα(t) and lim
t→∞

tα∆(t)
α(t)

= ϑ,

C being a positive constant. If ϑ = 0, then f is said to be slowly varying.

In Řehák, Vı́tovec [153], a Karamata type definition for RV functions on T is
introduced and an embedding theorem is proved. Note that conditions posed on
the behavior of the graininessµ(t) of a time scaleT plays a crucial role in the theory.
In particular we suggest to distinguish three cases: (a) The graininess satisfies the
condition µ(t) = o(t) as t → ∞. Then we obtain a continuous like theory which
unifies the above discrete and continuous theories. (b) The case where µ(t) = Ct
with C ∈ (0,∞) leads to the q-case, which is discussed below. (c) Other cases — in
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particular when the graininess is “too large” or a “combination of large and small”
— give no reasonable theory of regular variation in a certain sense.

Applications of this theory (especially when µ(t) = o(t)) to dynamic equations
on time scales can be found in the works listed in Section 6.3.

The concept of the so-called q-regularly varying functions was introduced in
Řehák, Vı́tovec [153]. Let qN0 denote the q-uniform lattice qN0 = {qk : k ∈N0}, q > 1.
Let Dq f denote the Jackson derivative of f . Further we set [a]q = (qa

− 1)/(q − 1)
for a ∈ R. Quantum version of regular variation of f : qN0 → (0,∞) can be defined
in accordance with Definition 1.15 as follows.

Definition 1.16. A function f : qN0 → (0,∞) is said to be q-regularly varying of index
ϑ, ϑ ∈ R, if there exists a function β : qN0 → (0,∞) satisfying

f (t) ∼ Cβ(t), and lim
t→∞

tDqβ(t)
β(t)

= [ϑ]q,

C being a positive constant. If ϑ = 0, then f is said to be q-slowly varying.

However, as was shown in the quoted paper, thanks to the structure of qN0 ,
we are able to find much simpler (and still equivalent) characterization which has
no analogue in the classical continuous or the discrete case. Such a simplification
is possible since q-regular variation can be characterized in terms of relations
between f (t) and f (qt), which is natural for discrete q-calculus, in contrast to other
settings. In particular, for f : qN0 → (0,∞) we have

f is q-regularly varying of index ϑ ⇔ lim
t→∞

f (qt)
f (t)

= qϑ.

For further properties of q-regularly varying functions (and other related functions
such as q-rapidly varying ones) see [142] and [154]. Note that in [145], certain
generalization of q-regular variation was introduced which somehow involves
also q-rapid variation or q-hypergeometric functions.

Applications of this theory to q-difference equations can be found in the works
listed in Section 6.4.

1.3.4 Hardy field

The so-called logarithmico-exponential function is defined as a real-valued function
defined on [a,∞) by

a finite combination of the ordinary symbols (+,−, ·, /, n
√)

and the functional symbols ln(·), exp(·), operating
on the variable x and on real constants,

see Hardy [52, III.2].
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More generally, see Bourbaki [18], a Hardy field is
a set of germs of real-valued functions on [a,∞) that is closed
under differentiation and that form a field under the usual
addition and multiplication of germs,

see also Rosenlicht [155]. Loosely speaking, Hardy fields are the natural domain
of asymptotic analysis, where all rules hold without qualifying conditions.

In Hardy’s own words [52, V.6]: “No function has yet presented itself in analysis
the laws of whose increase, in so far as they can be stated at all, cannot be stated, so
to stay, in logarithmico-exponential terms.” This statement of Hardy was basically
influenced by the fact that the arithmetic functions occurring in the number theory
having often very complicated structure and for which he expected “would give
rise to genuinely new modes of increase,” so far obey the log-exp laws of increase.

That indicates a possible significance of the results in this treatise. For any
logarithmico-exponential function f (or any element of Hardy fields) together
with the derivatives, is ultimately continuous and monotonic, of constant sign
and limx→∞ f (x) exists as a finite or infinite one. On the other hand, as we could
see above, a slowly varying function may somehow oscillate, even infinitely. As
some of the results in the next chapter show, solutions of differential solutions
(for instance, of a second-order (half-)linear one) may behave as SV functions.
Therefore, the solutions of such a (simple) equation may exhibit a “genuinely new
mode of increase.” To support our point we emphasize here that no hypothesis of
some of the theorems which lead to the above statement about solutions is related
to regular variation.

For completeness, note that Rosenlicht in [155] looks for asymptotic formulas
for solutions to the linear differential equation y′′ = p(t)y with the help of the
theory of Hardy fields. It is assumed that p(t) → ∞ as t → ∞ and p belongs
to a Hardy field. In fact, the problem is transferred to the investigation of the
associated Riccati equation.



Chapter 2
Linear second order differential
equations

Although this text is focused primarily on applications of the theory of regular
variation to nonlinear differential equations, we start with linear equations. The
objective of this chapter is multiple: comparison purposes, reference purposes,
but also other ones. Indeed, many of the results which we present here will
be later generalized to a nonlinear case. Second, some of the results for linear
equations will be utilized in the study of nonlinear equations in various ways.
Third, some of the statements may serve as a motivation for an attempt to extend
them (in particular, to the half-linear case or to the nearly linear case). Moreover,
our survey includes also the results that appeared after Marić’s book [105] and we
point out new relations among various results, and revise some of them.

Since we want primarily to deal with nonlinear equations, we present the
results in this chapter without proofs and give only comments; they include the
main ideas in some instances.

Perhaps the first paper where linear differential equations were studied in the
framework of regular variation is [130] (Omey, 1981). Note that a connection of reg-
ular variation with nonlinear equations was shown much earlier by Avakumović
in 1947, see [9] and Section 4.2.

We consider linear second order equation

y′′ + p(t)y = 0, (2.1)

where p is a continuous function on [a,∞). Many of the results in this chapter were
obtained by Marić, Tomić, and their collaborators. Another important authors in
this direction are Howard, Geluk, Grimm, Hall, Omey, and Radašin – this concerns
the research up to the year 2000. For more information see the monograph [105]
by Marić. Recent results for linear equations presented here are mainly due to
Jaroš, Kusano, Marić, and Řehák.

39
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2.1 Karamata solutions; coefficient with sign condition

Instead of (2.1) it is more convenient to consider now

y′′ − p(t)y = 0. (2.2)

In the following theorem, the sign condition on p is assumed. Note that under
this condition the equation is nonoscillatory (by the Sturm comparison theorem).
Without loss of generality, we analyze only positive solutions.

Note that although the statements refer to regular or rapid variation, none of
the hypotheses of the theorem requires this notion.

Theorem 2.1 (Marić, Tomić [105, 114]). Let p be positive.
(i) Equation (2.2) has a fundamental set of solutions y1(t) = L1(t) ∈ SV, y2(t) =

tL2(t) ∈ RV(1) if and only if

lim
t→∞

t
∫
∞

t
p(s) ds = 0.

Moreover, L1,L2 ∈ NSV with L2(t) ∼ 1/L1(t). All positive decreasing solutions of (2.1)
are inNSV and all positive increasing solutions are inNRV(1).

(ii) Equation (2.2) has a fundamental set of solutions y1(t) = tϑ1L1(t) ∈ RV(ϑ1),
y2(t) = tϑ2L2(t) ∈ RV(ϑ2) if and only if

lim
t→∞

t
∫
∞

t
p(s) ds = C,

where ϑ1 < ϑ2 are the roots of the equation ϑ2
− ϑ − C = 0. Moreover, L1,L2 ∈ NSV

with L2(t) ∼ 1/((1−ϑ1)L1(t)). All positive decreasing solutions of (2.1) are inNRV(ϑ1)
and all positive increasing solutions are inNRV(ϑ2).

(iii) Equation (2.2) has a fundamental set of solutions y1 ∈ RPV(−∞), y2 ∈ RPV(∞)
if and only if for each λ > 1

lim
t→∞

t
∫ λt

t
p(s) ds = ∞.

Moreover, all positive decreasing solutions of (2.1) are in RPV(−∞) and all positive
increasing solutions are in RPV(∞).

It would be of interest whether the integrals in conditions in all three parts of
the theorem were the same. To make a conclusion, the following observations are
important (see Grimm, Hall [49]): t

∫
∞

t p(s) ds→ 0 as t→∞ if and only if, for each

λ > 1, t
∫ λt

t p(s) ds→ 0 as t→∞. Also, t
∫
∞

t p(s) ds→ C > 0 as t→∞ if and only if,

for each λ > 1, t
∫ λt

t p(s) ds→ C(λ−1)/λ as t→∞. Thus, the interval of integration
in all three conditions may be taken to be (t, λt). On the other hand, these are
easier to verify for the interval (t,∞) as it appears in the first of them. However
in the third condition the interval (t, λt) cannot be replaced by (t,∞) even when
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the integral
∫
∞

t p(s) ds converges. For, the condition t
∫
∞

t p(s) ds → ∞ as t → ∞

does not necessarily imply even that limt→∞ t
∫ λt

t p(s) ds exists for all λ > 1. A
counter-example is presented in Grimm, Hall [49].

From the previous theorem we get the following statement. Recall that by
Karamata functions we mean SV or RV or RPV functions.

Corollary 2.1. All (eventually positive) solutions are Karamata functions if and only if
there exists for each λ > 1,

lim
t→∞

t
∫ λt

t
p(s) ds

as a finite or infinite one.

Marić and Tomić in [113] proved a similar result under a more restrictive
assumption on p, namely that the limit limt→∞ t2p(t) exists. This is a sufficient
condition for (2.1) to be in the Karamata class. More precisely, we have the
following

Corollary 2.2 (Marić, Tomić [113]). If limt→∞ t2p(t) = A, then all decreasing solutions
of (2.2) are slowly or rapidly or regularly varying functions with the index ϑ = (1 −
√

1 + 4A)/2 in the latter case, according to as A = 0, A = ∞, A ∈ (0,∞), respectively.

The second linearly independent solution can be treated as in the general case.
That is, with the use of the reduction of order formula in the SV and RV cases,
and directly in the RPV case.

Such a result was in essence first discovered by Omey in [130, Theorem 2.1]
(with an additional assumption) and formulated for solutions tending to infinity.
This excludes the case A = 0 or ϑ = 0, since SV solutions cannot cannot increase.
Thus the “trichotomy” character of the result is lost in such formulation.

An important feature of Corollary 2.2 consists in opening various possibilities
of a subtle use of classes Π,BSV and Γ in further analysis of solutions under
consideration. Thus, by specifying the way in which t2 f (t) tends to the finite limit
A, Geluk proved in [45] some refinements of Corollary 2.2, see Subsection 2.6.1. In
that he makes use of the class Π.Analogous results for the case A = ∞ are obtained
in [130, 131] by Omey using classes BSV and Γ, see Subsection 2.6.1. Also some
of these results were generalized to the half-linear case and improved even in the
linear case, see Section 3.6. In Section 5.5 we discuss this type of results for nearly
linear equations.

2.2 Karamata solutions; coefficient with no sign condition

Now consider equation (2.1) with no sign condition on p. Such an equation may
have oscillatory solutions. However, since we are interested in solutions belonging
to Karamata class whose elements are positive, only nonoscillatory solutions have
to be considered. Observe that expressions in conditions guaranteeing regular



42 Section 2.2

variation or regular boundedness resemble expressions which appear in the well
known Hille-Nehari type (non)oscillation criteria.

In contrast to the case when p(t) < 0 in (2.1) and eventually positive solutions
always exist, here we have to establish the existence of nonoscillatory solutions
first. This can be achieved either by proving it ab ovo, in fact simultaneously with
the regularity like in subsequent Theorems 2.3 and 2.4, or by applying the following
auxiliary result. In addition to the methods used by Howard, Marić, Radašin
[57, 56], there exists also a different approach, based on the Banach contraction
mapping principle, see Jaroš, Kusano [58] — both, principal and nonprincipal
solutions can be directly constructed. Results in Section 3.2 can be understood as
a half-linear extension of this approach.

The following result very well suits our needs. The proof uses the method of
successive approximation and a variant of the Riccati technique can be revealed
in it.

Proposition 2.1 (Howard, Marić, Radašin [57, 105]). Put

P(t) =

∫
∞

t
p(s) ds. (2.3)

If there exists a positive continuous function h with h(t)→ 0 as t→∞, and such that for
t ≥ t0, |P(t)| ≤ h(t),

∫
∞

t h2(t) dt ≤ Ah(t) with 0 < A < 1/4, then (2.1) is nonoscillatory
and there exists a solution of the form

y(t) = exp
{∫ t

a
(P(s) − Z(s)) ds

}
. (2.4)

Here Z is a solution of the integral equation

Z(t) = −

∫
∞

t
(Z(s) − P(s))2ds (2.5)

satisfying Z(t) = O(h(t)) as t→∞.

The previous proposition plays a key role in the proof of the following gener-
alization of Theorem 2.1-(i).

Theorem 2.2 (Howard, Marić [56, 105]). Equation (2.1) has a fundamental set of
solutions y1(t) = L1(t) ∈ SV, y2(t) = tL2(t) ∈ RV(1) if and only if

lim
t→∞

t
∫
∞

t
p(s) ds = 0. (2.6)

Moreover, L1,L2 ∈ NSV with L2(t) ∼ 1/L1(t) as t→∞.

In the next result, Proposition 2.1 cannot be applied, and one has to prove
regularity and thus nonoscillation directly.
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Theorem 2.3 (Howard, Marić [56, 105]). Let A ∈ (−∞, 1/4), A , 0, and let ϑ1 < ϑ2 be
the roots of the equation ϑ2

−ϑ+ A = 0. Equation (2.1) has a fundamental set of solutions
y1(t) = tϑ1L1(t) ∈ RV(ϑ1), y2(t) = tϑ2L2(t) ∈ RV(ϑ2) if and only if

lim
t→∞

t
∫
∞

t
p(s) ds = A. (2.7)

Moreover, L1,L2 ∈ NSV with L2(t) ∼ 1/((1 − ϑ1)L1(t)) as t→∞.

The next theorem deals with the border case when A = 1/4 in (2.7). Note that
in general no conclusion concerning oscillation or nonoscillation of (2.1) can be
drawn. Also in this result, Proposition 2.1 cannot be applied.

Theorem 2.4 (Howard, Marić [56, 105]). Let A = 1/4 and suppose that the integral∫
∞ φ(s)

s ds converges. Put

φ(t) := t
∫
∞

t
p(s) ds − A and ψ(t) :=

∫
∞

t

φ(s)
s

ds.

Assume ∫
∞ ψ(s)

s
ds < ∞.

Then equation (2.1) has a fundamental set of solutions y1(t) =
√

tL1(t) ∈ RV(1/2),
y2(t) =

√
t ln tL2(t) if and only if (2.7) holds. Moreover, L1,L2 ∈ NSV, tend to constants

and L2(t) ∼ 1/L1(t) as t→∞.

In the above theorems the existence of the limit of t
∫
∞

t p(s) ds is required. If
one relaxes that request to a condition of Hille-Nehari type, then we get regular
boundedness. Proposition 2.1 finds application in the proof.

Theorem 2.5 (Howard, Marić [56, 105]). If, for large t,∣∣∣∣∣t ∫ ∞

t
p(s) ds

∣∣∣∣∣ ≤ A <
1
4
,

then all (eventually positive) solutions of (2.1) are in RB.

2.3 Generalization and self-adjoint equation

It is natural to ask whether the results of the previous section can be extended to
the more general equation

y′′ + g(t)y′ + h(t)y = 0 (2.8)

or to the equation in the self-adjoint form

(r(t)y′)′ + p(t)y = 0. (2.9)

The next result is an easy consequence of Theorem 2.3, it is based on a suitable
transformation.
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Theorem 2.6 (Marić, Tomić [105, 116]). Let A,B ∈ R be such that

B
2
−

B2

4
+ A <

1
4

(2.10)

and letα1 < α2 be the roots of the equationα2
−α+γ = 0 withγ = B/2−B2/4+A. Further,

let h be continuous and g continuously differentiable on [t0,∞) and such that tg(t) → B
as t→∞. Then there exist two linearly independent regularly varying solutions y1, y2 of
(2.8) of the form yi(t) = tαi−B/2Li(t), i = 1, 2, if and only if

lim
t→∞

t
∫
∞

t
h(s) ds = A.

Here L1,L2 ∈ NSV are such that

L2(t) ∼
1

(1 − 2α1)L1(t)
exp

{∫ t

a

ε(s)
s

ds
}

with some ε(t)→ 0 as t→∞.

Condition (2.10) excludes the case α1 = 0. Observe that A = B = 0 implies
α1 = 0, α2 = 1 so that y1 ∈ NSV and y2 ∈ NRV(1).

From the previous theorem, taking g(t) = r′(t)/r(t), h(t) = p(t)/r(t), we get the
result for self-adjoint equation (2.9).

Corollary 2.3. Let A,B, α1, α2 be as in Theorem 2.6. Let p be continuous, r positive and
twice continuously differentiable on [t0,∞), and such that

tr′(t)
r(t)

→ B as t→∞. (2.11)

Then (2.9) has two RV solutions yi having the same form as in Theorem 2.6 if and only if

lim
t→∞

t
∫
∞

t

p(s)
r(s)

ds = A.

Using the method of Theorem 2.1, Grimm and Hall [49] obtained similar result
but for p(t) < 0 only, requiring of p to increase and tend to a (finite) limit as
t → ∞. This is more restrictive than (2.11) but, as a compensation, r may be only
once continuously differentiable. They also generalized Theorem 2.6-(iii) using
the same method:

Theorem 2.7 (Grimm and Hall [49]). Let y be a decreasing solution of (2.9), p(t) < 0,
and r ∈ NSV be nondecreasing with r(t) → 1 as t → ∞. Then y ∈ RPV if and only if
for each λ > 1, t

∫ λt
t p(s) ds→∞ as t→∞.
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Jaroš and Kusano in [60] used a different approach to investigation of RV-
type solutions to (2.9). It utilizes the concept of generalized regular variation, see
Subsection 1.3.1, which was introduced for this purpose in [60]. The contraction
mapping theorem plays also a role. These results were generalized later to the
half-linear case, see Section 3.4. For comparison purposes we give the results for
linear equation here. Note however that some differences may occur. For instance,
in the linear case, once we know the behavior of one solution, then — in many
cases — it is easy to examine behavior of a linearly independent solutions. Further,
once we have a fundamental set of RB solutions, it is almost immediate (because
of linear combinations) to show that all positive solutions are RB. On the other
hand, the solution space for half-linear equations is not linear and the reduction
of order formula cannot be used.

No differentiability condition on r and no sign condition on p is assumed.
Essentially, we require p, r to be continuous with r > 0. The two cases are distin-
guished; this is quite usual when dealing with equations of the form (2.9):∫

∞

a

ds
r(s)

ds = ∞, (2.12)

and ∫
∞

a

ds
r(s)

ds < ∞. (2.13)

We denote R(t) =
∫ t

a
ds
r(s) ds if (2.12) holds and R̃(t) =

∫
∞

t
ds
r(s) ds if (2.13) holds.

In the next theorem we assume that p is integrable on [a,∞).

Theorem 2.8 (Jaroš, Kusano [60]). Let (2.12) hold.
(i) Let A ∈ (−∞, 1/4) and denote by ϑ1, ϑ2, ϑ1 < ϑ2, the real roots of the quadratic

equation ϑ2
− ϑ + A = 0. Equation (2.9) has a fundamental set of solutions {y1, y2} such

that yi ∈ NRVR(ϑi), i = 1, 2, if and only if

lim
t→∞

R(t)
∫
∞

t
p(s) ds = A.

(ii) Assume

lim
t→∞

R(t)
∫
∞

t
p(s) ds = 1/4.

Put

φ(t) = R(t)
∫
∞

t
p(s) ds −

1
4

and suppose that ∫
∞
|φ(s)|

r(s)R(s)
ds < ∞ and

∫
∞ ψ(s)

r(s)R(s)
ds < ∞,

where ψ(t) =
∫
∞

t
|φ(s)|

r(s)R(s) ds. Then equation (2.9) possesses a fundamental set of solu-

tions {y1, y2} such that yi ∈ NRVR(1/2), i = 1, 2, and y1(t) =
√

R(t)L1(t), y2(t) =
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√
R(t)L2(t) ln R(t), where L1,L2 ∈ NSVR and limt→∞ Li(t) = Ci ∈ (0,∞), i = 1, 2, with

C1C2 = 1.
(iii) If

−
1
4
< lim inf

t→∞
R(t)

∫
∞

t
p(s) ds ≤ lim sup

t→∞
R(t)

∫
∞

t
p(s) ds <

1
4
,

then (2.9) is nonoscillatory and all its eventually positive solutions are in RBR.

The next theorem is a complement of the previous one, in the sense of condition
(2.13). We assume that R̃2(t)p(t) is integrable on [a,∞).

Theorem 2.9 (Jaroš, Kusano [60]). Let (2.13) hold.
(i) Let B ∈ (−∞, 1/4) and denote by µ1, µ2, µ1 < µ2, the real roots of the quadratic

equation µ2
− µ + B = 0. Equation (2.9) has a fundamental set of solutions {y1, y2} such

that yi ∈ NRV1/R̃(µi), i = 1, 2, if and only if

lim
t→∞

1
R̃(t)

∫
∞

t
R̃2(s)p(s) ds = B.

(ii) Assume

lim
t→∞

1
R̃(t)

∫
∞

t
R̃2(s)p(s) ds = 1/4.

Put

φ(t) =
1

R̃(t)

∫
∞

t
R̃2(s)p(s) ds −

1
4

and suppose that ∫
∞
|φ(s)|

r(s)R̃(s)
ds < ∞ and

∫
∞ ψ(s)

r(s)R̃(s)
ds < ∞,

where ψ(t) =
∫
∞

t
|φ(s)|

r(s)R̃(s) ds. Then equation (2.9) possesses a fundamental set of solutions
{y1, y2} such that yi ∈ NRV1/R̃(−1/2), i = 1, 2, and

y1(t) =

√
R̃(t)L1(t), y2(t) =

√
R̃(t)L2(t) ln

1
R̃(t)

,

where L1,L2 ∈ NSV1/R̃ and limt→∞ Li(t) = Ci ∈ (0,∞), i = 1, 2, with C1C2 = 1.
(iii) If

−
1
4
< lim inf

t→∞

1
R̃(t)

∫
∞

t
R̃2(s)p(s) ds ≤ lim sup

t→∞

1
R̃(t)

∫
∞

t
R̃2(s)p(s) ds <

1
4
,

then (2.9) is nonoscillatory and all its eventually positive solutions are in RB1/R̃.
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2.4 Linear differential equations having
regularly varying solutions

Kusano and Marić in [94] deals with the question whether for any distinct real
constants ϑ1 and ϑ2 there exists a differential equation of the form (2.9) which
possesses a pair of solutions yi ∈ RV(ϑi), i = 1, 2. The problem was solved for
more general, half-linear, equation. Here we formulate the linear version. The
general statement along with the proof is presented in Section 3.7. The function ω
which appears in the theorem is assumed to satisfy conditions from the definition
of regularly varying functions with respect to ω, see Definition 1.10.

Theorem 2.10 (Kusano and Marić [94]). Let ϑ1 and ϑ2 be any given real constants
such that |ϑ1| , |ϑ2|.

(i) Suppose that r satisfies 1/r(t) ∼ Kωϑ1+ϑ2−1(t)ω′(t) as t → ∞ for some positive
constant K. Let ϑ1 + ϑ2 > 0 and p be conditionally integrable on [a,∞). Then equation
(2.9) possesses a fundamental set of solutions yi ∈ NRVω(ϑi), i = 1, 2, if and only if

lim
t→∞

Kωϑ1+ϑ2(t)
∫
∞

t
p(s) ds =

ϑ1ϑ2

ϑ1 + ϑ2
.

(ii) Suppose that 1/r(t) = Kωϑ1+ϑ2−1(t)ω′(t) for some positive constant K. Let ϑ1 +
ϑ2 < 0 and ω2(ϑ1+ϑ2)p be conditionally integrable on [a,∞). Then equation (2.9) possesses
a fundamental set of solutions yi ∈ NRVω(ϑi), i = 1, 2, if and only if

lim
t→∞

Kω−(ϑ1+ϑ2)(t)
∫
∞

t
ω2(ϑ1+ϑ2)(s)p(s) ds = −

ϑ1ϑ2

ϑ1 + ϑ2
.

2.5 Regularly varying solutions of Friedmann
equations

Mijajlović, Pejović, Šegan, and Damljanović in [125] applied the theory ofRV func-
tions to the asymptotical analysis at infinity of solutions of Friedmann cosmological
equations. Their analysis is strongly based on Theorem 2.2 and Theorem 2.3.

Let us consider Friedmann equations(u′

u

)2
=

8πG
3
ρ −

kc2

u2 (Friedmann equation) (2.14)

u′′

u
= −

4πG
3

(
ρ +

3p
c2

)
(acceleration equation) (2.15)

that describe the evolution of the expansion scale factor u(t) of the universe. Here,
p = p(t) is the energy pressure in the universe, ρ = ρ(t) is the density of matter in
the universe, k is the space curvature, G is the gravitational constant and c is the
speed of light. The variable t represents the cosmic time.



48 Section 2.6

In [125], it is established a necessary and sufficient condition for solutions that
satisfy the generalized power law expressed as u(t) = tϑL(t), where L ∈ SV. The
analysis is strongly based on Theorem 2.2 and Theorem 2.3. For this reason it
is introduced a new parameter µ(t) = q(t)(H(t)t)2 where q(t) is the deceleration
parameter and H(t) is the Hubble parameter. It is proved that the Friedmann
equations (2.14) and (2.15) have an asymptotical solution u(t) that satisfies the
generalized power law if and only if the integral limit

Υ = lim
t→∞

t
∫
∞

t

µ(s)
s2 ds (2.16)

exists and Υ < 1/4. It is proved that the values of the constant Υ completely deter-
mines the asymptotical behavior of all cosmological parameters u(t),H(t), q(t), p(t),
and ρ(t). It appears that this approach covers all results on cosmological parame-
ters for the Standard model of the universe, as presented for example in [103] or
in [139]. The crucial role in this analysis is played by the linear functional related
to (2.16)

M( f ) = lim
t→∞

t
∫
∞

t

f (s)
s2 ds,

M is defined on the class of real functions that satisfy (2.16) for some Υ. It is proved
that f ∈ ker M if and only if there are real functions ϕ and η such that

f (t) = tϕ′(t) + η(t), ϕ(t), η(t)→ 0 as t→∞.

This representation of f ∈ ker M yields the asymptotical representations of the
mentioned cosmological parameters, even assuming that the Einstein’s cosmolog-
ical constant Λ is non-zero. Detailed proofs and physical interpretations of these
results can be found in [125].

2.6 More precise information about asymptotic behavior

2.6.1 De Haan type solutions

To some extent, the results here can be understood as ramifications and refinements
of observations related to Corollary 2.2.

We start with the statements established for (2.2) by Geluk in [45], see also
Marić [105], which essentially concern a description of behavior of SV solutions.
Under the conditions posed on p (in addition to t2p(t) → 0 as t → ∞, we have
a second order condition), the Hartman result [53, Chapter XI, Ex. 9.9b] can be
refined. Note that — for other comparison purposes — the Hartman result is
recalled below in (2.33).

Theorem 2.11 (Geluk [45]). Assume t2p(t) → 0 as t → ∞. Let y be an eventually
positive decreasing solution of (2.2). If p ∈ RV(−2), then −y ∈ Π(−ty′(t)). Moreover, if
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∫
∞

a sp(s) ds = ∞, then

y(t) = exp
{
−

∫ t

a
sp(s)(1 + ε(s)) ds

}
, (2.17)

and if
∫
∞

a sp(s) ds < ∞, then

y(t) = y(∞) exp
{∫

∞

t
sp(s)(1 + ε(s)) ds

}
, (2.18)

where ε(t)→ 0 as t→∞.

Note that if
∫
∞

a sp(s) ds converges in Theorem 2.11, then solutions under con-
sideration tend to a positive constant, whereas if it diverges the representation
does not imply in general that

y(t) ∼ y(a) exp
{
−

∫ t

a
sp(s) ds

}
as t → ∞, see e.g. (2.19). A half-linear extension of the above result and related
observations are presented in Section 3.6, while in Section 2.7 we offer a “4-th order
extension.” In Section 5.5 we discuss this type of formulas in connection with the
so called nearly linear equations.

The following result is an extension of the previous theorem to the case of RV
solutions.

Theorem 2.12 (Geluk [45]). Assume L(t) := t2p(t) − A→ 0 as t→ ∞, where A > 0 is
a constant. Let y be an eventually positive decreasing solution of (2.2). If L ∈ SV, then
−tϑy(t) ∈ Π(−t(tϑy(t))′) and

y(t) = t−ϑ exp
{
−

1
2ϑ + 1

∫ t

a

L(s)
s

(1 + ε(s)) ds
}
,

where ϑ > 0 and A are related by ϑ(ϑ + 1) = A, and ε(t)→ 0 as t→∞.

A remark analogous to that after Theorem 2.11 holds also here. Further, see
the remark after Theorem 2.17 which is concerned with certain generalization of
the above theorem.

The class ΠR2 opens further possibilities in obtaining more precise information
about considered solutions y of (2.2). The following statement is a refinement of
Theorem 2.11.

Theorem 2.13 (Geluk [45]). Assume t2p(t) → 0 as t → ∞. Let y be an eventually
positive decreasing solution of (2.2). If −t2p(t) ∈ Π(h), then −y ∈ ΠR2(v,w) with
v(t) = −ty′(t) and

w(t) ∼ ty′(t) + t2y′′(t) ∼ (h(t) + t4p2(t))y(t)
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as t→∞. The following three cases are possible:
(i) If

∫
∞

a s3p2(s) ds = ∞, then

y(t) = exp
{
−

∫ t

a
sp(s) ds +

∫ t

a
(s3p2(s) + h(s)/s)(1 + ε(s)) ds

}
, (2.19)

where ε(t)→ 0 as t→∞.
(ii) If

∫
∞

a s3p2(s) ds < ∞ and
∫
∞

a sp(s) ds = ∞, then

y(t) = exp
{
−

∫ t

a
sp(s) ds + C −

∫
∞

t
(s3p2(s) + h(s)/s)(1 + ε(s)) ds

}
, (2.20)

where C ∈ R is a constant and ε(t)→ 0 as t→∞.
(iii) If

∫
∞

a sp(s) ds < ∞, then

y(t) = y(∞) exp
{∫

∞

t
sp(s) ds −

∫
∞

t
(s3p2(s) + h(s)/s)(1 + ε(s)) ds

}
(2.21)

where ε(t)→ 0 as t→∞.

Also in this setting we have an extension to the case of regularly varying
solutions.

Theorem 2.14 (Geluk [45]). Assume L(t) := t2p(t) − A→ 0 as t→ ∞, where A > 0 is
a constant. Let y be an eventually positive decreasing solution of (2.2). If L ∈ Π(h), then
−tϑy(t) ∈ ΠR2 and

y(t) = t−ϑ exp
{
−

1
2ϑ + 1

∫ t

a

L(s)
s

ds

+
1

(2ϑ + 1)2

∫ t

a

h(s) + (2ϑ + 1)−1L2(s)
s

(1 + ε(s)) ds
}
,

where ϑ > 0 and A are related by ϑ(ϑ + 1) = A and ε(t)→ 0 as t→∞.

Under the conditions of Theorem 2.11, the linearly independent solution x(t) =

y(t)
∫ t

a
1

y2(s) ds satisfies x(t)/t ∈ Π. A representation can also be given. For example,

under the additional condition
∫
∞

a sp(s) ds = ∞,

x(t) = t(1 − 2t2p(t)(1 + o(1))) exp
{∫ t

a
(1 + o(1))sp(s) ds

}
.

A similar representation can be given in other cases.
Assuming p ∈ RV(−2) and t2p(t) → 0 as t → ∞ it follows from one of (2.17)

and (2.18) that −y ∈ Π(−ty′(t)). Similarly −t2p(t) ∈ Π(h), t2p(t) → 0 as t → ∞, and
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one of (2.19), (2.20), (2.21) imply −y ∈ ΠR2(v,w). In the first case of Theorem 2.11
relation (2.17) implies

y(t) = y(a) exp
{
−(1 + o(1))

∫ t

a
sp(s) ds

}
but the last representation does not imply −y ∈ Π any more. A similar remark
applies to the other expansions. In Theorem 2.13 it follows from [11, Theorem 3]
that t2p(t) ∼

∫
∞

t h(s)/s ds as t→∞, hence in (2.20) and in (2.21)∫
∞

t

h(s)(1 + ε(s))
s

ds = (1 + o(1))t2p(t)

as t→∞.
We finish this section with refinements of the results for RPV(∞) solutions of

(2.2) using the classesBSV and Γ. The core of the following result is due by Omey
and appeared in [47, 130, 131, 133]. Later it was extended to the half-linear case
and additional observations were made (some of the being new also in the linear
case), see Section 3.6. Denote

M+ = {y : y is a solution of (2.2) , y(t) > 0, y′(t) > 0 for large t}

and
M+
∞ = {y ∈M+ : lim

t→∞
y(t) = ∞}.

Theorem 2.15 (Omey [47, 130, 131, 133]). If 1/
√

p ∈ BSV, then ∅ , M+ = M+
∞ ⊆

Γ(1/
√

p).

A half-linear extension of the above theorem is presented in Subsection 3.6.1
Note that, under the assumptions of the theorem, for a solution y ∈ M+ we

have

lim
t→∞

y′(t)√
p(t)y(t)

= 1.

If p ∈ C1, then the assumption from the previous theorem — in view of the
properties of BSV functions — yields (1/

√
p(t))′ = −p′(t)p−3/2(t)/2 → A, where

A = 0, as t → ∞, cf. Hartman, Wintner [54]. If A > 0, then we obtain regular
variation of the solution; see Omey [130]. See also the discussion around equation
(2.39).

Let y be a solution as in the previous theorem and consider the linearly inde-
pendent solution

x(t) = C
∫
∞

t

1
y2(s)

ds,

C > 0. Note that limt→∞ x′(t) = 0 and x is nonprincipal solution while y is principal
solution. From (1.25) we get x ∈ Γ−(1/

√
p). Moreover, x′(t)/(

√
p(t)x(t)) → −1 as

t→∞.
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In the following considerations (Omey [130, 133]) we get a second-order result
by taking a closer look at H(t) := y(t)/h(t) − y′(t), where h ≥ 0 is defined by
h2(t)p(t) = 1. In order to obtain a rate of convergence result we assume that h′(t) < 0
for large t and that

−h′ ∈ SC(h).

Introduce the functions u and G by

u(t) = exp
{∫ t

a

1
h(s)

ds
}

and G(t) = u(t)H(t).

Since h′(t)→ 0, we have h ∈ SN and u ∈ Γ(h). Also we have

G′(t) = −
u(t)h′(t)

h2(t)
y(t).

Note that G′(t) > 0 for large t and G′(t) = u(t)(
√

p)′y(t). [If (
√

p)′′ > 0, we have that
G′′(t) > 0 and G′ is nondecreasing.] It is not difficult to see that

G′(t + λh(t))
G′(t)

→ exp(2λ)

so that G′ ∈ Γ(h/2). Now this implies that G(t) ∼ G′(t)h(t)/2. We conclude that

G(t) ∼ −
u(t)h′(t)y(t)

2h(t)

and then also that H(t) ∼ −h′(t)y(t)/(2h(t)). It follows that

h(t)y′(t)
y(t)

− 1 ∼
h′(t)

2
,

or
y′(t)
y(t)

=
1

h(t)
+ (1 + ε(t))

h′(t)
2h(t)

,

where ε(t)→ 0. Integration between t and λh(t) gives

ln
y(t + λh(t))

y(t)
− λ = I1(t) + I2(t),

where

I1(t) =

∫ λ

0

(
h(t)

h(t + sh(t))
− 1

)
ds,

I2(t) =

∫ t

0
(1 + ε(t + sh(t)))

h′(t + sh(t))h(t)
h(t + sh(t))

ds.

We get (see (1.28))

I1(t) ∼ −
h′(t)λ2

2
, I2(t) ∼ h′(t)λ.
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It follows that

ln
(

y(t + λh(t))
y(t)

exp(−λ)
)
∼ h′(t)

(
λ −

λ2

2

)
.

Since h′(t)→ 0, we obtain

y(t + λh(t))
y(t)

exp(−λ) − 1 ∼ h′(t)
(
λ −

λ2

2

)
.

2.6.2 A different approach

Similarly as in the first part of the previous section also here we obtain more
precise information about (slowly and regularly varying) solutions of (2.1). While
previously the considerations were based on Π-variation here we offer an alterative
procedure. Besides one method of successive approximations used in the proof of
an auxiliary proposition, the properties of regularly varying solutions are the only
essential tool.

To determine asymptotic behavior of solutions under consideration of equation
(2.1), due to representations in Theorem 2.2 and Theorem 2.3, since L2(t) ∼ 1/((1 −
ϑ1)L1(t)), one has to do it for L1 only. In principle the same procedure applies for
both slowly and regularly varying solutions. However, we consider separately
two cases: A = 0 and A , 0, −∞ < A < 1/4 (see (2.7)). The reason is that in the
former case one obtains a more general result than in the latter one.

We begin with an important auxiliary result which utilizes some of the ideas
of Proposition 2.1 on p. 42.

Proposition 2.2 (Howard, Marić, Radaśin, [57, 105]). Let the functions P and h be
defined as Proposition 2.1. If there exists a continuous decreasing function q(t) such that∫

∞

t
h2(s) ds ≤ q(t)h(t) (2.22)

and
0 < q(t) ≤ C < 1/4, (2.23)

and if for some n ∈N ∫
∞

qn(t)h(t) dt < ∞, (2.24)

then the solution y of (2.1) given by (2.4) satisfies

y(t) ∼ B exp
{∫ t

a
(P(s) − Zn−1(s)) ds

}
as t→∞, where Z0(t) := 0, Zn(t) := −

∫
∞

t (P(s)−Zn−1(s))2 ds, n ∈N, P(t) :=
∫
∞

t p(s) ds,
B is some positive constant, but one may take it to be 1.
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Note that in general solutions y in the previous proposition need not to be
slowly varying. But as established in Theorem 2.2, these are such under the
condition (2.6). This, in addition, implies the existence of a function q(t) satisfying
(2.22) and (2.23) by taking h(t) = q(t)/t. Consequently, we get the following
statement.

Theorem 2.16 (Howard, Marić, Radaśin, [57, 105]). Let (2.6) be fulfilled. If condition
for some n ∈N (2.24), being here of the form

∫
∞

cn+1(t)/t dt < ∞ holds, then two linearly
independent solutions of (2.1) y1(t) = L1(t), y2(t) = tL2(t), where L1,L2 ∈ NSV with
L2(t) ∼ 1/L1(t), possess the following asymptotic representation for t→∞

y1(t) ∼ exp
{∫ t

a
(P(s) − Zn−1(s)) ds

}
,

y2(t) ∼ t exp
{
−

∫ t

a
(P(s) − Zn−1(s)) ds

}
,

(2.25)

and ty′1(t)/y1(t)→ 0, ty′2(t)/y2(t)→ 1.

By Theorem 2.3, condition (2.7) which can be written in the form

φ(t) := t
∫
∞

t
p(s) ds − A→ 0 as t→∞, A , 0,

implies the existence of two linearly independent NRV solutions yi(t) = tϑiLi(t),
i = 1, 2, ϑ1 < ϑ2 being the roots of ϑ2

− ϑ + A = 0. Next we describe behavior
of these solutions in a more precise way. The result was firstly proved in Geluk,
Marić, Tomić [48] for the case p(t) < 0. The general case was treated in Marić [105].
Denote

%(t) = exp
{∫ t

1

2(ϑ1 + φ(s))
s

ds
}
.

Theorem 2.17 (Marić [105]). Let A ∈ (−∞, 1/4), A , 0. If∫
∞ φ2(s)

s
ds < ∞, (2.26)

then (2.1) possesses linearly independent solutions y1, y2 satisfying

y1(t) ∼ tϑ1 exp
{∫ t

a

(
φ(s)

s
+ 2ϑ1

∫
∞

s

%(τ)
%(s)
·
φ(τ)
τ2 dτ

)
ds

}
, (2.27)

y2(t) ∼
tϑ2

(1 − 2ϑ1)L1(t)

and y′i (t) ∼ ϑiyi(t)/t, i = 1, 2, as t→∞.
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In Geluk, Marić, Tomić [48, Theorem 1.2] the condition of integrability (2.26) is
replaced φ ∈ SV. That result can also be seen a a generalization of Theorem 2.11
and Theorem 2.12.

Note that in the asymptotic representation formula (2.27) two summands oc-
curring in the exponential function need not in general to be of the same order or
growth and consequently none of these can be disposed of. This is exemplified by
the result which follows where also by strengthening the conditions, the behavior
of solutions becomes much more legible.

Theorem 2.18 (Marić [105]). If in addition to (2.26) one has∫
∞

a

φ(t)
%(t)

∫
∞

t

%(τ)|φ(τ)|
τ2 dτdt < ∞, (2.28)

then

y1(t) ∼ tϑ exp
{

1
1 − 2ϑ1

∫ t

a

φ(s)
s

ds
}

(2.29)

as t→∞.

If φ(t) tends to zero sufficiently fast, e.g. like some power t−δ, δ > 0 (or faster),
then

∫ t
φ(s)/s ds converges and (2.27) becomes y1(t) ∼ Btϑ1 . From that point of

view, the following simple (and easy to apply) observation which uses properties
of RV functions is of interest. If φ(t) = O(Φ0(t)) as t→∞, where φ0 ∈ SV satisfies
(2.26), then the behavior determined by (2.29) holds.

In the special case of p(t) < 0, the root ϑ1 is always negative. Therefore, by the
use of inequality %(t)/%(s) ≤ (t/s)2ϑ1+2ε, which holds for any ε > 0 and t > s, s ≥ s0(ε),
condition (2.28) can be replaced by the simpler one∫

∞

a
|φ(t)|

∫
∞

t

|φ(s)|
s2 ds dt < ∞.

Theorem 2.18 (simplified by this remark) then extends the following result of Mařı́k
and Ráb [117]. If for some c > 0∫

∞

a
t|p(t) − c/t2

|dt < ∞,

then (2.2) has a pair of solutions y1, y2 such that

yi(t) ∼ t−ϑi and y′(t) ∼ ϑitϑi−1, (2.30)

where ϑi are the roots of ϑ2
− ϑ− c = 0. Observe that if we put ψ(t) = t(p(t)− ct−2),

then the preceding condition implies∫
∞

a

∫
∞

s

|ψ(τ)|
τ

dτds < ∞ and
∫
∞

t
|ψ(s)|ds→ 0
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as t→∞. Consequently for t→∞,

|φ(t)| =
∣∣∣∣∣t ∫ ∞

t
p(s) ds − c

∣∣∣∣∣ ≤ t
∫
∞

t

|ψ(s)|
s

ds ≤
∫
∞

t
|ψ(s)|ds→ 0

and also φ(t)/t =
∫
∞

t φ(s)/s ds is absolutely integrable over (a,∞). Therefore
all conditions of Theorem 2.18 are fulfilled and the result follows. This illus-
trates again kind of generalization we have: The slowly varying function L(t) =

exp
{

1
1−2ϑ1

∫ t
a φ(s)/s ds

}
in Theorem 2.18 multiplying by tϑ1 is in the result by Mařı́k

and Ráb the special one which tends to a constant as t→∞.
In the rest of this section we assume p(t) < 0 and again we study slowly

varying solutions. Of course, in this special case asymptotic representation of
solutions remains the same as before (i.e., (2.25)). However here if y1 is a SV
solution we know according to the results of Section 2.1 that it is normalized
and decreasing. Further, by the Representation Theorem, it is of the form y1(t) =

exp
{
−

∫ t
a η(s)/s ds

}
, where η(t) is positive and tends to zero as t → ∞. It also

satisfies the integral (Riccati type) equation

η(t) = t
∫
∞

t
p(s) ds − t

∫
∞

t

(
η(s)

s

)2

ds.

Furthermore by Theorem 2.1, condition (2.6) is fulfilled. Therefore by putting
Z(t) − P(t) = η(t)/t and Zn(t) − P(t) = ηn(t)/t, n ∈ N, where Z is a solution of
(2.5) and P(t) =

∫
∞

t p(s) ds, solution y1 has the form (2.4) and if a condition of the
type (2.24) holds, the asymptotic representation for y1 will follow. Since condition
(2.6) is necessary and sufficient for the existence of SV solutions, one can reverse
the above argument: Assume first (2.6) holds and then continue as above. It is
worthwhile mentioning that not only for the existence but also for the asymptotic
representation ofSV solutions, condition (2.6) is the sole one needed. Properties of
SV solutions do the rest. Condition (2.24) is only a technical one. We emphasize
here also that in contrast to the general case (no sign condition on p) where all
conditions that appear, (2.24) in particular, refer to functions h and q which have
to be constructed, whereas here those conditions can be expressed in terms of the
known function P(t) as defined by (2.3).

Observe that condition (2.6) and the negativity of p imply that for any ε > 0
there exists t0 such that for t ≥ t0, one has∫

∞

t
P2(s) ds ≤ ε|P(t)|. (2.31)

For, by a partial integration∫
∞

t
P2(s) ds = −tP2(t) + 2

∫
∞

t
s(−P(s))(−p(s)) ds
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and (2.31) follows.
Put

U1(t) :=
∫
∞

t
P2(s) ds, Un+1(t) := 2

∫
∞

t
−P(s)Un(s) ds, n ∈N.

Theorem 2.19 (Marić, Tomić [105, 115]). If for some n ∈N∫
∞

Un(s) ds < ∞, (2.32)

then for any SV solution y1 of (2.1) with p(t) < 0 and for the linearly independent
solution the asymptotic representation (2.25) holds.

Condition (2.32) might be cumbersome to verify. It can be replaced by a simpler
in general a cruder one, as it is done in corollary below.

Estimate (2.31) implies the existence of a positive continuous function q(t)
decreasing to zero and such that U1(t) =

∫
∞

t P2(s) ds ≤ q(t)|P(t)|/2. Then inequality
Un+1(t) ≤ εUn(t) with q(t) replacing ε, leads to Un(t) ≤ qn(t)|P(t)|. Hence the
previous theorem implies the following statement.

Corollary 2.4. If for some n ∈ N,
∫
∞

qn(t)|P(t)|dt < ∞, the asymptotic representation
(2.25) holds.

For comparison purposes we now recall the result by Hartman and Wintner
([53, Chapter XI, Ex. 9.9-b]); note that we utilized it already earlier, see the text
before Theorem 2.11. Let p(t) be a continuous complex function defined for t ≥ a. If
for some α ∈ [1, 2]

∫
∞

t2α−1
|pα(t)|dt < ∞, then equation (2.1) has a pair of solutions

such that

y1(t) ∼ exp
{∫ t

a
sp(s) ds

}
and ty′1(t)/y1(t)→ 0,

y2(t) ∼ t exp
{
−

∫ t

a
sp(s) ds

}
and ty′2(t)/y2(t)→ 1

(2.33)

as t→∞.
The results for the derivatives show that when y1, y2 are real, they respectively

areNSV andNRV(1).
E.g. for p(t) < 0 Theorem 2.19 gives the above behavior for y1 and y2 with

n = 1. For, y1(t) ∼ exp
{∫ t

a p(s) ds
}
. By integrating partially and then using (2.6)

one obtain the above behavior for y1, similarly for y2 and for derivatives.
Instead of Hartman-Wintner conditions we have by (2.32) for n = 1, again after

a partial integration,
∫ t

a sP2(s) ds < ∞. These two conditions are not comparable in
general. However, for the rather general example p(t) = ε(t)/t2 where ε(t) is almost
decreasing, their condition is reduced to

∫
∞
εα(s)/s ds and ours to

∫
∞
ε2(s)/s ds <

∞. They coincide for α = 2 whereas for the remaining values of α it might happen
that the latter is fulfilled but the former is not.
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The asymptotics of solutions for t→∞ of the type we consider here is obtained
for the more general system y′ = [A + B(t)]y, where A is a constant n × n matrix
whose characteristic roots are all simple and the continuous matrix B(t) is such
that

∫
∞
|B(s)|ds < ∞ and hence for the n-th order equation

y(n) + b1(t)y(n−1) + · · · + bn(t)y = 0.

Compare with Coppel [23, Chapter IV, Th. 2, Th. 3]. We formulate explicitly the
result for the n-th order equation with n = 2, b1(t) = 0, b2(t) = p(t), in order to
compare it with the present ones, e.g. that of Theorem 2.19 when p(t) < 0: If the
function p(t) is continuous for t ≥ t0 and −

∫
∞

sp(s) ds < ∞, then equation (2.1) has
two linearly independent solutions y1, y2 such that

y1(t)→ 1, y2(t) ∼ t, ty′1(t)→ 0, y′2(t)→ 1

as t→∞. On the other hand, Theorem 2.19, with n = 1, gives, as mentioned above:
If

∫
∞

sP2(s) ds < ∞, then for the above mentioned solutions y1, y2 one obtains (2.33).
But in (the special case of) the Coppel theorem the integral

∫
∞

sp(s) ds converges,

this is to say that the SV functions exp
{
±

∫ t
a sp(s) ds

}
become the special ones

which tend to a constant at variance with the present result where these can be
completely general ones.

2.7 A note about higher order equations; an alternative
approach to second order equations

At the end of the previous section we mentioned the concept of a higher order
equation. Here we consider a general n-th order linear differential equation again,
and briefly describe the approach by which it was investigated in Řehák [148]. The
main ideas are simple: To apply the classical Poincaré-Perron type result [138, 140],
to find a fundamental set of real solutions, and to use a suitable transformation.
We will see that consequences of the main statement can yield known results (in
particular for second order equations); the method however is different.

For a given function τ, we define the operator Dτ as Dτu(s) = τ(s) du
ds . Further,

we set Dn
τu(s) = τ(s) d

dsD
n−1
τ u(s), n ∈N, with D0

τ = id . Consider the linear equation

Dn
τu + ãn−1(s)Dn−1

τ u + · · · + ã1(s)Dτu + ã0(s)u = 0, (2.34)

where ã0, . . . , ãn−1 are continuous functions and τ is a positive continuous function
on [a,∞).

Theorem 2.20 (Řehák [148]). Let limt→∞ ãi(s) = Ai, i = 0, . . . ,n− 1, and %i be the roots
of %n + An−1%n−1 + · · · + A1% + A0 = 0 all assumed to be real and of distinct moduli. Let∫

∞

a

1
τ(z)

dz = ∞.
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Then equation (2.34) possesses a fundamental set of (real) solutions {u1, . . . ,un} such that

ui ∈ NRVω(%i), i = 1, . . . ,n,

where ω(s) = exp
{∫ s

a
1
τ(z) dz

}
. Every nontrivial (real) solution u of (2.34) satisfies

|u| ∈ NRVω(%m) for some m ∈ {1, . . . ,n}.

Note that one important step of the proof consists of transformation of equation
(2.34) into

dny
dtn + an−1(t)

dn−1y
dtn−1

+ · · · + a1(t)
dy
dt

+ a0(s)y = 0 (2.35)

by means of the relations s = ξ(t) and u(s) = y(ξ−1(s)) = y(t), where ξ is defined as
the inverse of the function s 7→

∫ s
a

1
τ(z) dz.

Theorem 2.20 can be applied in various ways. We mention several corollaries
which are related to the results presented in this text.

Consider first the second order equation (such an equation is considered e.g.
in (2.8))

u′′ + b1(s)u′ + b0(s)u = 0, (2.36)

where b0, b1 are continuous on [a,∞).

Corollary 2.5. Let there exist a function τ with the properties

τ ∈ C1([a,∞)), τ(s) > 0 for s ≥ a, and
∫
∞

a

1
τ(z)

dz = ∞

such that
lim
s→∞

(τ(s)b1(s) − τ′(s)) = A1 , 0,

lim
s→∞

τ2(s)b0(s) = A0,

where A2
1 > 4A0. Then equation (2.36) possesses a fundamental set of solutions {u1,u2}

such that
ui ∈ NRVω(%i), i = 1, 2,

where %1,2 = 1
2

(
−A1 ±

√
A2

1 − 4A0

)
andω(s) = exp

{∫ s
a

1
τ(z) dz

}
. If u is a nontrivial (real)

solution of (2.36), then |u| is normalized regularly varying with respect to ω of index %1
or %2.

If we choose τ(s) = s, then ω(s) = s (up to a negligible multiplicative constant)
and NRVω = NRV. Hence we get the following corollary. Note that with this
choice, the function s = ξ(t) defining the new variable in the proof of Theorem 2.20
becomes ξ(t) = et. Recall also the two useful relations which hold generally:
τ = ξ′ ◦ ξ−1 and ω = exp ◦ξ−1.
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Corollary 2.6. If

lim
s→∞

sb1(s) = A1 + 1 , 1, lim
s→∞

s2b0(s) = A0 (2.37)

with A2
1 > 4A0, then equation (2.36) possesses a fundamental set of solutions {u1,u2}

such that ui ∈ NRV(%i), i = 1, 2, where %1, %2 are as in the previous corollary. If u is a
nontrivial (real) solution of (2.36), then |u| is normalized regularly varying of index %1 or
%2.

A more special choice in the previous corollary, namely b1(s) ≡ 0, yields the
existence of normalized RV solutions of the indices

(
1 ±
√

1 − 4A0

)
/2 to the equa-

tion d2u
ds2 + b0(s)u = 0 provided lims→∞ s2b0(s) = A0 ∈ (−∞, 1/4). Recall that using a

different technique the same result was obtained by Marić and Tomić [113] under
the condition b0 < 0, see also Corollary 2.2. This result was in essence first discov-
ered by Omey in [130] (with additional conditions) and formulated for solutions
tending to infinity. Later, the sufficient condition from [113] was improved and
expressed in terms of lims→∞ s

∫
∞

s b0(z) dz = A0, and this integral condition was
shown to be also necessary for the existence of RV solutions, see Theorem 2.1.

Next we observe how Corollary 2.5 yields the result for a second order equation
in the self-adjoint form

(r(s)u′)′ + p(s)u = 0, (2.38)

where p ∈ C, r ∈ C1, r(s) > 0 on [a,∞), when some special (and somehow optimal)
setting is made. Recall that this equation was considered also in Section 2.3.
Assume first

∫
∞

a
1

r(z) dz = ∞. Set ω(s) =
∫ s

a
1

r(z) dz. Because of the relation between

ω and τ, which reads as τ = ω
ω′ , it means that τ(s) = r(s)

∫ s
a

1
r(z) dz. Equation (2.38)

can be written as (2.36), where b1 = r′
r and b0 =

p
r . Since τ(s)b1(s) = r′(s)

∫ s
a

1
r(z) dz,

τ′(z) = 1 − r′(z)
∫ s

a
1

r(z) dz, and

τ2(s)b0(s) = p(s)r(s)
(∫ s

a

1
r(z)

dz
)2

,

we have that (4.49) reduces to −1 = A1 and (4.50) reads as

lim
s→∞

p(s)r(s)
(∫ s

a

1
r(z)

dz
)2

= A0.

Similarly, if
∫
∞

a
1

r(z) dz < ∞, then we set ω(s) = 1/
∫
∞

s
1

r(z) dz, and (4.49) reduces to
1 = A1, while (4.50) becomes

lim
s→∞

p(s)r(s)
(∫

∞

s

1
r(z)

dz
)2

= A0.

Thus, applying Corollary 2.5, we get the following statement.
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Corollary 2.7. (i) Let
∫
∞

a
1

r(z) dz = ∞. Denote R(s) =
∫ s

a
1

r(z) dz. If

lim
s→∞

p(s)r(s)R2(s) = A ∈
(
−∞,

1
4

)
,

then equation (2.38) possesses a fundamental set of solutions {u1,u2} such that ui ∈

NRVR(%i), i = 1, 2, where %1,2 =
(
1 ±
√

1 − 4A
)
. If u is a nontrivial (real) solution of

(2.38), then |u| is normalized regularly varying with respect to R of index %1 or %2.
(ii) Let

∫
∞

a
1

r(z) dz < ∞. Denote R̃(s) =
∫
∞

s
1

r(z) dz. If

lim
s→∞

p(s)r(s)R̃2(s) = Ã ∈
(
−∞,

1
4

)
,

then equation (2.38) possesses a fundamental set of solutions {u1,u2} such that ui ∈

NRV1/R̃(%̃i), i = 1, 2, where %̃1,2 =
(
−1 ±

√

1 − 4Ã
)
. If u is a nontrivial (real) solution of

(2.38), then |u| is normalized regularly varying with respect to 1/R̃ of index %̃1 or %̃2.

As we could see in Theorem 2.8, using a different approach (more precisely,
a combination of the Riccati technique with the contraction mapping theorem),
Jaroš and Kusano in [60], showed that the condition

lim
s→∞

R(s)
∫
∞

s
p(z) dz = A <

1
4

is sufficient and necessary for the existence of a fundamental set of solutions with
the properties from the last corollary, provided

∫
∞

a
1

r(z) dz = ∞. Since — provided

the latter limit exists and
∫
∞

a p(z) dz converges — the L’Hospital’s rule yields

lim
s→∞

R(s)
∫
∞

s
p(s) dz = lim

s→∞
p(s)r(s)R2(s);

we see that we offer an alternative (and quite simple) approach to the result
closely related to Theorem 2.8. Similarly, if we assume

∫
∞

a
1

r(z) dz < ∞, then the
necessary and sufficient condition for the existence of generalized RV solutions
from Theorem 2.8 reads as

lim
s→∞

(R̃(s))−1
∫
∞

s
R̃2(z)p(z) dz = Ã <

1
4
.

To see a relation with Corollary 2.7-(ii), note that

lim
s→∞

(R̃(s))−1
∫
∞

s
R̃2(z)p(z) dz = lim

s→∞
p(s)r(s)R̃2(s),

provided the assumptions for the use of the L’Hospital rule are satisfied.
Corollary 2.5 can be utilized to study self-adjoint form (2.38) also in the fol-

lowing, slightly different, way. We set τ(s) = s, which yields ω(s) = s. Re-
call that equation (2.38) can be written as (2.36), where b1 = r′

r and b0 =
p
r .
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Since then τ(s)b1(s) − τ′(s) =
sr′(s)
r(s) − 1 holds, condition (4.49) can be understood

as r ∈ NRV(A1 + 1). Condition (4.50) reads as p(s) ∼ A0s−2r(s) which among
others means that also p is required to be regularly varying, namely of index
(A1 + 1) − 2 = A1 − 1. Thus we get the following statement.

Corollary 2.8. If

r ∈ NRV(A1 + 1) and s2p(s) ∼ A0r(s) as s→∞,

with A2
1 > 4A0, then equation (2.38) possesses a fundamental set of solutions {u1,u2} such

that ui ∈ NRV(%i), i = 1, 2, where %1, %2 are as in Corollary 2.5.

We conclude this part devoted to second order equations with showing another
way how Corollary 2.5 can be utilized. In addition, we present related observations
and indicate relations with known results. We consider the equation

u′′ = p(s)u, (2.39)

where p > 0, p ∈ C1. If b1 = 0 and b0 = −p, then (2.36) reduces (2.39). Clearly,
equation (2.39) is nonoscillatory. Set τ = 1/

√
p. Then condition (4.49) reads as

lim
s→∞

 −1√
p(s)

′ = A1 (2.40)

and condition (4.50) reduces to A0 = −1. Assume first A1 , 0. Then
∫
∞

a
dz
τ(z) dz = ∞

and (2.39) possesses solutions ui ∈ NRVω(ϑi), i = 1, 2, where

ϑ1,2 =
1
2

(
−A1 ±

√
A2

1 + 4
)

(with ϑ1,2 , −1, 0, 1) and ω(s) = exp
{∫ s

a

√
p(z) dz

}
, by Corollary 2.5. Hence,

u′i (s)
ui(s) ∼

ϑi
√

p(s) as s→∞, i = 1, 2. Since ui is positive, u′i is eventually positive or negative.
We have

u′′i (s)ui(s)

(u′i (s))2 =
p(s)u2

i (s)

(u′i (s))2 ∼
1
ϑ2

i

, 1, (2.41)

i = 1, 2. We then get ui ∈ RV

(
ϑ2

i
ϑ2

i −1

)
, i = 1, 2, cf. Omey [130] where increasing

solutions are considered. Because of monotonicity of u′, we have

ui ∈ NRV

 ϑ2
i

ϑ2
i − 1

 , (2.42)

i = 1, 2. Observe that condition (2.40) with A1 , 0 implies the existence of the limit
lims→∞ s2p(s); compare with the latter condition in (2.37). The expected correspon-
dence between the indices of regular variation in (2.42) and in Corollary 2.6 with
b1 = 0 and b0 < 0 can be now easily revealed; the details are left to the reader.
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Assume now A1 = 0 in (2.40) and
∫
∞

a

√
p(z) dz = ∞. Then by Hartman-Wintner

[54, Paragraph 24], (2.39) has a pair of solutions satisfying

u′i (s) ∼ ±
√

p(s)ui(s) (2.43)

as s → ∞, i = 1, 2. Notice that the roots of the associated characteristic equation
%2
− 1 = 0 are ±1, and so Corollary 2.5 can not be used. In terms of generalized

regular variation, we can write ui ∈ NRVω(±1), where ω(s) = exp
{∫ s

a

√
p(z) dz

}
.

For increasing solutions, this statement was rediscovered in [130] by Omey. In
addition, by the same author, relations with the class Γ were shown and condition
(2.40) with A1 = 0 was relaxed to 1/

√
p ∈ BSV (without requiring p ∈ C1) in [131],

see Theorem 2.15. Other type of relaxation of (2.40) with A1 = 0 can be found in
Hartman-Wintner [54], namely to the condition

sup
0≤k<∞

| ln p(s + k)/p(s)|

1 +
∫ s+k

s

√
p(z) dz

→ 0

as s→ 0, which is sufficient and also necessary for equation (2.39) to posses a pair
of solutions satisfying (2.43). Let us show how the classes Γ(±1; v) are involved.
In the set {u1,u2} satisfying (2.43), clearly one solution must be increasing (say u1)

while other is decreasing. Similarly as in (2.41), we obtain
u′′i (s)ui(s)

(u′i (s))2 ∼ 1 as s → ∞,
i = 1, 2. Hence we get ui ∈ Γ(σi; v), i = 1, 2, where σ1 = 1, σ2 = −1, and v = |u/u′|.
Thus

ui = Γ(σi; p−
1
2 ),

i = 1, 2, by (2.43). From the transformation relations between u(s) and y(t) (see the
text after (2.35)) we obtain a pair of Poincaré-Perron solutions {y1, y2} of

d2y
dt2 + a1(t)

dy
dt
− y = 0 (2.44)

satisfying dy(t)
dt ·

1
y(t) → ±1 as t → ∞, where a1(t) = ã1(ξ(t)) = −τ′(ξ(t)) → 0 as

t → ∞; ξ being the inverse of s 7→
∫ s

a
1
τ(z) dz. In this connection we recall the

result [23, Chapter IV, Theorem 2] according to which (2.44) possesses a pair of
solutions satisfying y(t) ∼ et, y2(t) ∼ e−t, dy1(t)

dt ∼ et, dy2(t)
dt ∼ e−t as t → ∞ provided

the (stronger) condition
∫
∞

a |a1(z)|dz < ∞ is fulfilled. Clearly then y1 ∈ Γ(1; 1),
y2 ∈ Γ(−1; 1). Another result of Coppel ([23, Chapter IV, Theorem 14]) says that if
p > 0 and

∫
∞

a |p
−3/2(t)p′′(t)|dt < ∞, then (2.39) has a fundamental set of solutions

satisfying

ui(s) ∼ p−1/4(s) exp
{
±

∫ s

a
p1/2(t) dt

}
,

u′i (s) ∼ p1/4(s) exp
{
±

∫ s

a
p1/2(t) dt

}
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as s→∞, i = 1, 2.
For completeness, we mention another two classical results which are somehow

related to the topic of this paragraph. Hartman’s result [53, Ex. 9.9-b] is recalled
in (2.33). Mařı́k’s and Ráb’s statement reads as (2.30) The conditions in these
statements (including Coppel’s one) differ among each other but lead to the same
type of conclusions. As we could see above, such a behavior is typical for regularly
(or rapidly) varying solutions. Concerning the requirement imposed on p, the

behavior of s2p(s) (or, possibly, of s
∫
∞

s p(t) dt or of s
∫ λs

s p(t) dt) is crucial in that
respect. Recall that the existence of the finite limit lims→∞ s2p(s) leads to a regularly
varying solutions while lims→∞ s2p(s) = ∞ yields rapidly varying solutions of
(2.39), see Section 2.1. The fact that a solution is a RV or RPV function is less
precise than the formulas in the quoted results, but requires milder hypotheses.

Next we examine the third order equation in the self-adjoint form

u′′′ + 2b(s)u′ + b′(s)u = 0, (2.45)

where b ∈ C1([a,∞)). First note that this equation is not so special in comparison
with the general equation

u′′′ + b2(s)u′′ + b1(s)u′ + b0(s)u = 0, (2.46)

as it might seem. Indeed, the second derivative term in (2.46) can always be
removed by the transformation

u(s) = v(s) exp
{
−

1
3

∫ s

a
b2(z) dz

}
to obtain the equation v′′′ + 2b(s)v′ + (b′(s) + c(s))v = 0. This form has frequently
occurred in the literature ([65, 157]), thus we can easily make a comparison. Our
method (which leads to the existence of generalized regularly varying solutions)
and is based on Theorem 2.20 applies also to general equation (2.46).

Corollary 2.9. If
lim
s→∞

(−s3b′(s)) = B < 1, (2.47)

then (2.45) possesses a fundamental system of solutions {u1,u2,u3} such that ui ∈

NRV(%i), i = 1, 2, 3, where %1 = 1, %2 = 1 +
√

1 − B, %3 = 1 −
√

1 − B. If u is a
nontrivial (real) solution of (2.45), then |u| is normalized regularly varying of index 1 or
1 +
√

1 − B or 1 −
√

1 − B.

In Jaroš, Kusano, Marić [65], see Section 5.3 — using a different approach
which is based on the correspondence of (2.45) with certain second order equation
— it is proved that the statement of Corollary 2.9 holds under the assumption
lims→∞

∫
∞

s b(z) dz = B
2 . A simple use of the L’Hospital rule shows how (2.47) im-

plies this assumption. Note however that (2.47) does not require the convergence
of

∫
∞

a b(z) dz.
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We conclude this section with observations related to the two-term fourth order
linear differential equation

u(4) + b(s)u = 0, (2.48)

where b ∈ C([a,∞)). Denote

G(x) = x4
− 6x3 + 11x2

− 6x.

Applying Theorem 2.20 we get the following statement.

Corollary 2.10. If

lim
s→∞

s4b(s) = A ∈
(
−

9
16
, 1

)
,

then equation (2.48) possesses a fundamental set of solutions {u1,u2,u3,u4} such that
ui ∈ NRV(%i), i = 1, 2, 3, 4, where %i are the (real) roots of G(%) + A = 0. If u is a
nontrivial (real) solution of (2.48), then |u| is normalized regularly varying of index %1 or
%2 or %3 or %4.

Note that as a by-product of Corollary 2.10 we get a nonoscillation criterion for
equation (2.48). For related criteria see [157, Chapter 3].

Let us now examine slowly varying solutions of (2.48) where b < 0 and A = 0.
Let us write the equation in the form

u(4) = p(s)u, (2.49)

i.e., p = −b > 0. Since A = 0, the roots of G(%) + A = 0 are 0, 1, 2, 3, and so
SVsolutions of (2.49) indeed exist. Eventually positive solutions of (2.49) are
eventually monotone and therefore a solution u ∈ SV is eventually monotone.
It can be shown that SV solutions cannot increase. Hence, if we deal with SV
solutions, in fact, we deal with all positive decreasing solutions of (2.49), since
non-SV solutions are in RV(1) ∪ RV(2) ∪ RV(3). As for the existence of SV
solutions, the condition lims→∞ s4p(s) = 0 can be relaxed to

lim
s→∞

∫
∞

s
z2p(z) dz = 0. (2.50)

More precisely, it then holds that any eventually positive decreasing solution u of
(2.49) is inNSV.

Next we give asymptotic formula for a solution u ∈ SV under the assump-
tion p ∈ RV(−4). Denote H(s) = s3p(s)/6. It holds H ∈ RV(−1) and any of the
possibilities, convergence or divergence of

∫
∞

a H(z) dz, can in general occur.

Theorem 2.21 (Řehák [148]). Let p ∈ RV(−4) with Lp(s)→ 0 as s→ ∞; Lp being the
SV component of p. Then the set of eventually positive decreasing solutions of (2.49)
(which is nonempty) is a subset of SV. For each solution u ∈ SV (which is necessarily
decreasing) one has −u ∈ Π(−su′(s)) and one of the following formula holds:
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(i) If
∫
∞

a H(z) dz = ∞, then u(s) tends to zero as s→∞ and satisfies the formula

u(s) = exp
{
−

∫ s

a
(1 + o(1))H(z) dz

}
.

(ii) If
∫
∞

a H(z) dz < ∞, then u(s) tends to a positive constant u(∞) as s → ∞ and
satisfies the formula

u(s) = u(∞) exp
{∫

∞

s
(1 + o(1))H(z) dz

}
.

The above theorem can be understood as a “fourth-order extension” of Theo-
rem 2.11.

2.8 On zeros of oscillatory solutions, asymptotic behavior
of maxima and of eigenvalues

The problem of determining the asymptotic behavior of the number of zeros is an
old one and studied by many authors, see e.g. Hartman [53, Chapter XI]. Here we
show how the class of Beurling slowly varying functions can be utilized to obtain
some information about this behavior. The results were achieved by Hačik and
Omey [51], see also Marić [105], Omey [130].

In this section we assume that p in (2.1) is a positive and continuous function.
In the sequel, {tn}, tn → ∞, denotes the sequence of zeros of a solution y(t) of

(2.1) and N(I) the number of these in the interval I.
As an example, consider equation (2.1) with p(t) = k2, k ∈ (0,∞). Every solution

of (2.1) has the form y(t) = c1 sin(kt) + c2 cos(kt), where cc, c2 ∈ R. We see that this
solution has an infinite number of zeros tn, n ∈ N, which satisfy tn+1 − tn = π/k
and ktn ∼ n as n→ ∞. This last statement says that the number of zeros less than
tn asymptotically equals

√
p(tn)tn.

In the general case Titchmarsh [165], p. 146, proved that, whenever p(t) is
continuous and of bounded variation, there holds that∣∣∣∣∣∣N((a, t)) −

1
π

∫ t

a

√
p(s) ds

∣∣∣∣∣∣ ≤ 1 +
1

2π

∫ t

a
1/

√
p(s)

∣∣∣∣d(
√

p(s))
∣∣∣∣ .

We will discuss conditions under which we can relate the asymptotic behavior
of p(t) to that of N((0, t]), to that of the sequence of zeros {tn} and to that of the
sequence {tn+1 − tn}.

First note that if 1/
√

p ∈ BSV, then t2p(t)→∞ as t→∞ so that equation (2.1)
is oscillatory.

Theorem 2.22 (Hačik and Omey [51]). Suppose 1/
√

p ∈ BSV. Then

(i) N((0, t]) ∼ 1
π

∫ t
0

√
p(s) ds as t→∞,

(ii) N((t, t + s/
√

p(s)]) = t
π + O(1) for each s > 0.
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From the properties of BSV functions we have that if 1/
√

p ∈ BSV, then p
may be regularly varying and likewise belong to the class Γ. This justifies the
following two corollaries.

Corollary 2.11. (i) If p ∈ RV(α), α > −2, then N((0, t]) ∈ RV((α + 2)/2) and

N((0, t]) ∼
2

π(α + 2)
t
√

p(t)

as t→∞
(ii) If p ∈ Γ(h(t)), then N((0, t]) ∈ Γ(2h(t)) and

N((0, t]) ∼
2
π

h(t)
√

p(t)

as t→∞.

The proof of this corollary follows from the previous theorem and elementary
properties of the classes RV and Γ.

If we replace t by tn and use limn→∞
√

p(tn)(tn+1 − tn) = π, we get the following
statement for the sequence of zeros.

Corollary 2.12. (i) If p ∈ RV(α), α > −2, then tn
√

p(tn) ∼ nπ(α + 2)/2 and

n
tn+1 − tn

tn
→

2
α + 2

as n→∞.
(ii) If p ∈ Γ(h(t)), then h(tn)

√
p(tn) ∼ nπ/2 and

n
tn+1 − tn

h(tn)
→ 2

as n→∞.

Up to now we assumed 1/
√

p(t) ∈ BSV which implies t2p(t) → ∞ as t → ∞.
When t2p(t) → A ≥ 1/4 however (2.1) may remain oscillatory. To deal with this
kind of equations we transform (2.1) into a more suitable form. Generally, consider
the differential equation (2.9), r(t) > 0, t ≥ a ≥ 0. For a suitable function Ψ we can
define

ξ(t) =

∫ t

a

1
r(s)Ψ2(s)

ds, η(ξ) =
y(t)
Ψ(t)

.

With this transformation, (2.9) becomes

d2η

dξ2 + p̃(ξ)η(ξ) = 0, 0 ≤ ξ ≤ ξ(∞),

where p̃(ξ) = [(rΨ′)′+ pΨ]Ψ3r, see Willett [166, p. 597]. Now tn is a zero of y if and
only if ξn ≡ ξ(tn) is a zero of η. Hence the number of zeros of y less than or equal
T is the same as the number of zeros of η less than ξ(T). Now Theorem 2.22 yields
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Theorem 2.23 (Hačik and Omey [51]). Suppose that p̃ satisfies the conditions of Theo-
rem 2.22. Then for equation (2.9) we have

N((0, t]) ∼
1
π

∫ t

a

√
p̃(ξ(s))ξ′(s) ds

as t→∞.

In the case of (2.1) we have r ≡ 1. If we choose Ψ(t) =
√

t, a = 1, then ξ = ln t
and p̃(ξ) = t2p(t) − 1/4. Hence we get

Corollary 2.13. (i) If p̃(t) = e2tp(et) − 1/4 ∈ RV(α), α > −2, then

N((0, t]) ∼
1
π

ln t
√

t2p(t) − 1/4
2

α + 2

as t→∞.
(ii) If p̃ ∈ Γ(h), then

N((0, t]) ∼
1
π

2h(ln t)
√

t2p(t) − 1/4

as t→∞.

This corollary of course remains valid when t2p(t)→∞.
Omey in [130] studies also asymptotic behavior of the sequence {y2(sn)} of

successive maxima of y2, y being a solution of (2.1), sn denotes the value at which
|y(t)| reaches a maximum. For illustration, we present here one selected result.
Note that its proof uses some of the previous results in this section, the Sturm
comparison theorem and Wiman’s method [167].

Theorem 2.24 (Omey [130]). (i) Let p be a monotone function such that

lim
t→∞

tp′(t)
p(t)

= α ∈ (−2,∞).

Then the sequences {y′2(tn)}, {y−2(sn)} are in RV(α/(α + 2)).
(ii) Let p′ ∈ Γ(h(t)) and

lim
t→∞

ln(p(t))

h(t)
√

p(t)
= 0.

Then the sequences {y′2(tn)}, {y−2(sn)} are in RV(1).

Omey [130] further studies the asymptotic behavior of the eigenvalues of the
linear operator

L = q(t) −
d2

d2t
in (0,∞). Consider the differential equation L[y] = λy, where λ ∈ R. A function
which satisfies this equation and also some boundary conditions (e.g. y(0) = 0,
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y′(0) = 0) is called an eigenfunction. The corresponding value of λ is called an
eigenvalue. We will assume that q(t) diverges to infinity as t → ∞, since the
operatorL then has an infinite number of eigenvalues {λn}; also the eigenfunction
associated with λn has exactly n zeros [165, p. 110].

In the theorem below it is examined how the distribution of the eigenvalues {λn}

is determined by the function q. We present the result without a proof; note just
that it utilizes the Sturm comparison theorem, an Abelian type theorem involving
RV functions, and some the previous results in this section. Let M(x) denote the
number of eigenvalues of the operator L not exceeding x.

Theorem 2.25 (Omey [130]). Let q be a continuous, increasing function with q(0) = 0.
If q ∈ RV(α), α ∈ (0,∞), then M ∈ RV((α + 2)/(2α)). Furthermore,

q(M(t)/
√

t) ∼ t
(

B(3/2, 1/α)
απ

)α
as t→∞, where B(·, ·) denotes the beta function.

Under the conditions of this theorem, the sequence {λn} is regularly varying
with the index 2α/(α + 2) and

q(n/
√
λn) ∼ kn

(
B(3/2, 1/α)

απ

)α
as n→∞.

Solving this “asymptotic functional equation”, we can derive an explicit asymp-
totic formula for {λn}; we give a sufficient condition to do this (the proof uses the
concept of conjugate SV solutions). Suppose q(t) = (tL(t))α, α ∈ (0,∞), where
L ∈ SV. If for all real β,

lim
t→∞

L(tLβ(t))
L(t)

= 1,

then

λn ∼

(
nαπ

B(3/2, 1/α)

)2( α
α+2 )2 q

( nαπ
B(3/2, 1/α)

) 2
α+2




2
α+2

as n→∞.
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Chapter 3
Half-linear second order
differential equations

3.1 Introduction

In this chapter we consider the half-linear second order differential equation

(r(t)Φ(y′))′ + p(t)Φ(y) = 0, Φ(u) := |u|α−1 sgn u, α > 1, (3.1)

Recall that the terminology half-linear differential equation (systematically used
by Bihari and Elbert for the first time) reflects the fact that the solution space of
(3.1) is homogeneous, but not additive. The works of Mirzov [126] and Elbert [30]
are usually regarded as pioneering ones. A quite comprehensive treatment on
half-linear differential equations can be found in the book [28] by Došlý, Řehák.

We suppose that the functions r, p are continuous and r(t) > 0 in the interval
under consideration. Many of the results for (3.1) can be formulated under weaker
assumptions that the functions 1/r, c are locally integrable. However, since we are
interested in solutions of (3.1) in the classical sense (i.e., a solution y of (3.1) is a C1

function such that rΦ(y′) ∈ C1 and satisfies (3.1) in an interval under consideration),
the continuity assumption is appropriate for this setting.

Half-linear equations are closely related to the partial differential equations
with p-Laplacian. In fact, (3.1) is sometimes called the differential equation with
the one-dimensional p-Laplacian. Recall that the α-Laplacian is a partial differential
operator of the form

∆αu := div
(
‖∇u‖α−2

∇u
)
,

where, for u = u(x) = u(x1, . . . , xN), ∇u =
(
∂
∂x1
, . . . , ∂

∂xN

)
is the Hamilton nabla oper-

ator and, for v(x) = (v1(x), . . . , vN(x), div v(x) =
∑N

i=1
∂v
∂xi

(x) is the usual divergence
operator. If u is a radially symmetric function, i.e., u(x) = y(t), t = ‖x‖, ‖ · ‖ being
the Euclidean norm in RN, the (partial) differential operator ∆α can be reduced to
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the ordinary differential operator

∆αu(x) = t1−N
(
tN−1Φ(y′(t))

)′
, ′ =

d
dt
.

There are at least another two ways how half-linear equations can be under-
stood. First, as a natural generalization of second order linear differential equa-
tions. Indeed, if α = 2, then (3.1) reduces to (2.9). Second, as a special case of
certain Emden-Fowler type equations, which are studied in the next chapter.

Some of the results will be formulated for the half-linear equation in a more
special form

(Φ(y′))′ + p(t)Φ(y) = 0. (3.2)

An important role in some of the proofs will be played (not surprisingly) by the
generalized Riccati differential equation

w′ + p(t) + (α − 1)|w|β = 0, (3.3)

which is associated to (3.2) by the substitution w = Φ(y′/y). Note that the Riccati
technique is extremely useful also in many other parts of qualitative theory of
half-linear equations, see Došlý, Řehák [28].

Basic classification and asymptotics of nonoscillatory solutions to half-linear
equations are discussed e.g. in Cecchi, Došlá, Marini [19] and Chanturiya [20], see
also [28, Chapter 4].

The results in this chapter can be understood as a half-linear extension of
some of the results from the previous chapter, but there are also some original
formulas. However we should emphasize that due to the lack of the additivity
of the solutions space of equation (3.1), many steps in the proofs (if not the proof
entire) require a quite new approach or at least a highly nontrivial modification
comparing with the linear case. As an example of the problematic point we can
mention that there is no reduction of order formula for (3.1), and so we cannot
so simply construct a linearly independent solution provided one solution (with
some known properties) is at disposal.

3.2 RV and RB solutions of half-linear equations

The results of this section are based on the paper [59] by Jaroš, Kusano, and
Tanigawa.

3.2.1 Auxiliary statement

Proposition 3.1. Put P(t) =
∫
∞

t p(s) ds and suppose that there exists a continuous
function h : [t0,∞)→ (0,∞), t0 ≥ 0, such that limt→∞ h(t) = 0, |P(t)| ≤ h(t), t ≥ t0, and∫

∞

t
hβ(s) ds ≤

1
α − 1

aβ−1h(t), t ≥ t0, (3.4)
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for some positive constant

a <
1
α

(
α − 1
α

)α−1
. (3.5)

Then equation (3.2) is nonoscillatory and has a solution of the form

y(t) = exp
{∫ t

t0

Φ−1[v(s) + P(s)] ds
}
, t ≥ t0, (3.6)

where v is a solution of the integral equation

v(t) = (α − 1)
∫
∞

t
|v(s) + P(s)|βds, t ≥ t0, (3.7)

satisfying
v(t) = O(P(t)) as t→∞. (3.8)

Proof. Consider the function y defined by (3.6). Recall that if w is a solution of

generalized Riccati equation (3.3), then exp
{∫ t

t0
Φ−1(w(s)) ds

}
is a (nonoscillatory)

solution of (3.2). Hence, y is a solution of (3.2) if v is chosen in such a way that
w = v + P satisfies (3.3) on [t0,∞). The differential equation for v then reads
v′+ (α−1)|v + P(t)|β = 0, which upon integration under the additional requirement
that limt→∞ v(t) = 0, yields (3.7). We denote by Ch[t0,∞) the set of all continuous
functions v on [t0,∞) such that

‖v‖h = sup
t≥t0

|v(t)|
h(t)

< ∞.

Clearly, Ch[t0,∞) is a Banach space equipped with the norm ‖v‖h. Let Ω be a subset
of Ch[t0,∞) defined by Ω = {v ∈ Ch[t0,∞) : |v(t)| ≤ (α − 1)h(t), t ≥ t0} and define
the mapping T : Ω→ Ch[t0,∞) by

T v(t) = (α − 1)
∫
∞

t
|v(s) + P(s)|βds, t ≥ t0. (3.9)

If v ∈ Ω, then

|T v(t)| ≤ (α − 1)αβ
∫
∞

t
hβ(s) ds ≤ αβaβ−1h(t),

t ≥ t0, which implies that

‖T v‖h ≤ αβaβ−1 < αβ
(

(α − 1)α−1

αα

)β−1

= α − 1. (3.10)



74 Section 3.2

Thus T maps Ω into itself. If v1, v2 ∈ Ω, then, using the Mean Value Theorem, we
see that

|T v1(t) − T v2(t)| ≤ (α − 1)
∫
∞

t

∣∣∣|v1(s) + P(s)|β − |v2(s) + P(s)|β
∣∣∣ ds

≤ (α − 1)β
∫
∞

t
(αh(s))β−1

|v1(s) − v2(s)|ds

= αβ
∫
∞

t
hβ(s)

|v1(s) − v2(s)|
h(s)

ds

≤ αβ(β − 1)aβ−1h(t)‖v1 − v2‖h,

t ≥ t0, from which it follows that

‖T v1 − T v2‖h ≤ (β − 1)αβaβ−1
‖v1 − v2‖h.

In view of (3.5) (or (3.10)), this implies that T is a contraction mapping on Ω.
Therefore, by the contraction mapping principle, there exists an element v ∈ Ω
such that v = T v, that is, a solution of integral equation (3.7). Thus the function
y(t) defined by (3.6) with this v(t) gives a solution of (3.2) on [t0,∞). The fact that
v satisfies (3.8) is a consequence of v ∈ Ω. This completes the proof. �

3.2.2 RV solutions with different indices

The following theorem is a generalization of the main part of Theorem 2.2. Propo-
sition 3.1 is applied in the proof.

Theorem 3.1. Equation (3.2) is nonoscillatory and and has two solutions y1 and y2 such
that y1 ∈ NSV, y2 ∈ NRV(1) if and only if

lim
t→∞

tα−1
∫
∞

t
p(s) ds = 0 (3.11)

Proof. If. Suppose that the condition from the theorem holds. Put

ϕ(t) = sup
s≥t

∣∣∣∣∣sα−1
∫
∞

s
p(τ) dτ

∣∣∣∣∣ . (3.12)

Then ϕ is nonincreasing and tends to zero as t→∞. Let t0 > 0 be such that

ϕ(t) <
1
α

(
α − 1
α

)α−1
and |P(t)| ≤

ϕ(t)
tα−1

for t ≥ t0. Put h(t) = ϕ(t)t1−α. Then |P(t)| ≤ h(t) holds and∫
∞

t
hβ(s) ds =

∫
∞

t

(
ϕ(s)
sα−1

)β
ds ≤

ϕβ(t)
(α − 1)tα−1

=
1

α − 1
ϕβ−1(t)h(t)



Chapter 3 75

t ≥ t0. Consequently, by Proposition 3.1, (3.2) has a nonoscillatory solution of the
form (3.6) on [t0,∞) with v satisfying (3.8). Since

tα−1v(t) = O(tα−1h(t)) = o(1) and tα−1P(t) = O(tα−1h(t)) = o(1)

as t → ∞, we conclude that y is a normalized slowly varying function. The
existence of a solution y2 ∈ NRV(1) follows from the proof of Theorem 3.2.

Only if. It follows from the only if part of the proof of Theorem 3.2 �

The following theorem is a generalization of the main part of Theorem 2.3.
As it can be easily seen, the previous theorem can be included in its statement,
but we prefer to distinguish these two results because the part dealing with the
existence of a SV solution uses different ideas. In fact, in the proof of Theorem 3.2
we consider only the nonzero roots of the associated algebraic equation, since the
case with the zero root is treated in the proof of the previous theorem.

Let λ1 and λ2, λ1 < λ2, denote the two real roots of the equation

|λ|β − λ + A = 0. (3.13)

It is easy to see that (3.13) has two distinct real roots if and only if A < 1
α

(
α−1
α

)α−1
.

Clearly, λ1 < 0 < λ2 if A < 0, and 0 < λ1 < λ2 if 0 < A < 1
α

(
α−1
α

)α−1
. It should be

noticed that αΦ−1(λ1) < α − 1 < αΦ−1(λ2).

Theorem 3.2. Equation (3.2) is nonoscillatory and has two solutions y1 and y2 such that
y1 ∈ NRV(Φ−1(λ1)) and y2 ∈ NRV(Φ−1(λ2)) if and only if

lim
t→∞

tα−1
∫
∞

t
p(s) ds = A ∈

(
−∞,

1
α

(
α − 1
α

)α−1)
. (3.14)

Proof. Only if. Let yi be solutions belonging to NRV(Φ−1(λi)), i = 1, 2. From the
representation theorem it follows that

lim
t→∞

t
y′i (t)
yi(t)

= Φ−1(λi), so that lim
t→∞

y′i (t)
yi(t)

= 0, i = 1, 2. (3.15)

Put wi = Φ(y′/y), i = 1, 2. Then wi satisfies generalized Riccati equation (3.3), from
which, integrating on [t,∞) and noting that limt→∞wi(t) = 0, we have

tα−1wi(t) = (α − 1)tα−1
∫
∞

t

|sα−1wi(s)|β

sα
ds + tα−1

∫
∞

t
p(s) ds, i = 1, 2, (3.16)

for all sufficiently large t. Let t→∞ in (3.16). Using (3.15), we conclude that

lim
t→∞

tα−1
∫
∞

t
p(s) ds = λi − |λi|

β = A, i = 1, 2.
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If. Assume that (3.14) holds. Put ω(t) = tα−1
∫
∞

t p(s) ds − A and consider the
functions

yi(t) = exp
{∫ t

ti

Φ−1
(
λi + ω(s) + vi(s)

sα−1

)
ds

}
, i = 1, 2. (3.17)

Then the function yi is a solution of (3.2) on [ti,∞) if vi is chosen in such a way that
wi = (λi +ω+ vi)/tα−1 satisfies (3.3) on [ti,∞), i = 1, 2. The differential equation for
vi then reads

v′i −
α − 1

t
vi +

α − 1
t

(
|λi + ω(t) + vi|

β
− |λi|

β
)

= 0, i = 1, 2. (3.18)

We rewrite (3.18) as

v′i +
αΦ−1(λi + ω(t)) − (α − 1)

t
vi

+
α − 1

t

[
|λi + ω(t) + vi|

β
− βΦ−1(λi + ω(t))vi − |λi|

β
]

= 0

and transform it into

(ri(t)vi)′ +
α − 1

t
ri(t)Fi(t, vi) = 0, (3.19)

where

ri(t) = exp
{∫ t

1

αΦ−1(λi + ω(s)) − (α − 1)
s

ds
}

and
Fi(t, v) = |λi + ω(t) + v|β − βΦ−1(λi + ω(t))v − |λi|

β, i = 1, 2.

It is convenient to express Fi(t, v) as Fi(t, v) = Gi(t, v) + zi(t), with Gi(t, v) and zi(t)
defined by

Gi(t, v) = |λi + ω(t) + v|β − βΦ−1(λi + ω(t))v − |λi + ω(t)|β

and zi(t) = |λi + ω(t)|β − |λi|
β, i = 1, 2. Now we suppose that A , 0 in (3.14),

which implies λi , 0 for i = 1, 2. Let t0 > 0 be such that |ω(t)| ≤ |λi|/4 for t ≥ t0,
i = 1, 2. This is possible because ω(t)→ 0 as t→ ∞ by hypothesis. It follows that
3
4 |λi| ≤ |λi + ω(t)| ≤ 5

4 |λi| for t ≥ t0, i = 1, 2. We observe that there exist positive
constants Ki(α),Li(α) and Mi(α) such that |Gi(t, v)| ≤ Ki(α)v2,∣∣∣∣∣∂Gi

∂v
(t, v)

∣∣∣∣∣ ≤ Li(α)|v| (3.20)

and |zi(t)| ≤ Mi(α)|ω(t)| for t ≥ t0 and |v| ≤ |λi|/4, i = 1, 2. In fact, the last two
estimations follow from the Mean Value Theorem, while the estimation for Gi is a
consequence of the L’Hospital rule applied to Gi:

lim
v→0

Gi(t, v)
v2 =

1
2

lim
v→0

∂2Gi(t, v)
∂v2 =

β

2(α − 1)
|λi + ω(t)|β−2.
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Let us examine equation (3.19) with i = 1. The following properties of r1 are
needed: r1 ∈ NRV(Φ−1(α) − (α − 1)), limt→∞ r1(t) = 0,

lim
t→∞

α − 1
r1(t)

∫
∞

t

r1(s)
s

ds = (α − 1) lim
t→∞

−r1(t)
tr′1(t)

=
α − 1

α − 1 − αΦ−1(λ1)
, (3.21)

lim
t→∞

α − 1
r1(t)

∫
∞

t

r1(s)
s

z(s) ds = 0 if z ∈ C[0,∞), and lim
t→∞

z(t) = 0. (3.22)

Let ε1 be a positive constant such that ε1 < min{1, |λ1|/4} and

2(α − 1)
α − 1 − αΦ−1(λ1)

[K1(α) + L1(α) + M1(α)]ε1 ≤ 1, (3.23)

and choose t1 ≥ t0 so that
|ω(t)| ≤ ε2

1, t ≥ t1, (3.24)

and
α − 1
r1(t)

∫
∞

t

r1(s)
s

ds ≤
2(α − 1)

α − 1 − αΦ−1(λ1)
, t ≥ t1. (3.25)

Note that (3.25) is an immediate consequence of (3.21).
Let C0[t1,∞) denote the set of all continuous functions on [t1,∞) which tend

to zero as t → ∞. Then C0[t1,∞) is a Banach space with the sup-norm ‖v‖ =
sup{|v(t)| : t ≥ t1}. Consider the set Ω1 ⊂ C0[t1,∞) defined by Ω1 = {v ∈ C0[t1,∞) :
|v(t)| ≤ ε1, t ≥ t1} and define the integral operator T1 by

(T1v)(t) =
α − 1
r1(t)

∫
∞

t

r1(s)
s

F1(s, v(s)) ds,

t ≥ t1. It can be shown that T1 is a contraction mapping on Ω1. In fact, if v ∈ Ω1,
then using the above inequalities we see that

|(T1v)(t)| ≤
α − 1
r1(t)

∫
∞

t

r1(s)
s

(|G1(s, v(s))| + |z1(s)|) ds

≤
α − 1
r1(t)

∫
∞

t

r1(s)
s

(K1(α)v2(s) + M1(α)|ω(s)|) ds

≤
α − 1
r1(t)

∫
∞

t

r1(s)
s

(K1(α) + M1(α))ε2
1 ds

≤
2(α − 1)

α − 1 − αΦ−1(λ1)
[K1(α) + M1(α)]ε2

1,

t ≥ t1. Since F1(t, v(t)) → 0 as t → ∞, we have limt→∞(T1v)(t) = 0 by (3.22). It
follows that T1v ∈ Ω1, and so T1 maps Ω1 into itself. Furthermore, if u, v ∈ Ω1,
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then using (3.20) and (3.23), we obtain

|(T1v)(t) − (T1u)(t)| ≤
α − 1
r1(t)

∫
∞

t

r1(s)
s
|F1(s, v(s)) − F1(s,u(s))|ds

=
α − 1
r1(t)

∫
∞

t

r1(s)
s
|G1(s, v(s)) − G1(s,u(s))|ds

≤
2(α − 1)

α − 1 − αΦ−1(λ1)
L1(α)ε1‖v − u‖,

t ≥ t1, which implies that

‖T1v − T1u‖ ≤
2(α − 1)L1(α)

α − 1 − αΦ−1(λ1)
ε1‖v − u‖.

In view of (3.23), this shows thatT1 is a contraction mapping on Ω1. The contraction
mapping principle then ensures the existence of a unique fixed element v1 ∈ Ω1
such that v1 = T1v1, which is equivalent to the integral equation

v1(t) =
α − 1
r1(t)

∫
∞

t

r1(s)
s

F1(s, v1(s)) ds, (3.26)

t ≥ t1. Differentiation of (3.26) shows that v1 satisfies differential equation (3.19)
with i = 1 on [t1,∞) and so substitution of this v1 into (3.17) gives rise to a solution
y1 of half-linear equation (3.2) defined on [t1,∞). Since limt→∞ v1(t) = 0, from the
representation theorem we have y1 ∈ NRV(Φ−1(λ1)).

Our next task is to solve equation (3.19) for i = 2 in order to construct a larger
solution y2 of (3.2) via formula (3.17). It is easy to see that r2 ∈ NRV(αΦ−1(λ2) −
α + 1), limt→∞ r2(t) = ∞ and that for any fixed t2 > 0,

lim
t→∞

α − 1
r2(t)

∫ t

t2

r2(s)
s

ds = (α − 1) lim
t→∞

r2(t)
tr′2(t)

=
α − 1

αΦ−1(λ2) − α + 1
,

lim
t→∞

α − 1
r2(t)

∫ t

t2

r2(s)z(s)
s

ds = 0 if z ∈ C[t2,∞) and lim
t→∞

z(t) = 0.

Let ε2 > 0 be small enough so that

2(α − 1)
αΦ−1(λ2) − α + 1

[K2(α) + L2(α) + M2(α)]ε2 ≤ 1,

and choose t2 > 0 so large that ω(t) ≤ ε2
2, t ≥ t2, and

α − 1
r2(t)

∫ t

t2

r2(s)
2

ds ≤
2(α − 1)

αΦ−1(λ2) − α + 1
,

t ≥ t2. Define the set Ω2 ⊂ C0[t2,∞) and the integral operator T2 by Ω2 = {v ∈
C0[t2,∞) : |v(t)| ≤ ε2, t ≥ t2}, and

(T2v)(t) = −
α − 1
r2(t)

∫ t

t2

r2(s)
s

F2(s, v(s)) ds,
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t ≥ t2. It is a matter of easy calculation to verify that T2 is a contraction mapping
on Ω2. Therefore there exists a unique fixed element v2 ∈ Ω2 of T2, which satisfies
the integral equation

v2(t) = −
α − 1
r2(t)

∫ t

t2

r2(s)
s

F(s, v2(s)) ds,

t ≥ t2, and hence differential equation (3.19) with i = 2. Then the function y2
defined by (3.17) with this v2 is a nonoscillatory solution of (3.2) on [t2,∞). The fact
that y2 ∈ NRV(Φ−1(λ2)) follows from the representation theorem. This finishes
the proof of the “if” part of the theorem for the case A , 0. If A = 0, then equation
(3.13) has the two real roots λ1 = 0, λ2 = 1. The solution y1 ∈ NRV(0) = NSV
of (3.2) corresponding to λ1 has already been constructed in Theorem 3.1. The
existence of the solution y2 ∈ NRV(1) corresponding to λ2 can be proved in
exactly the same manner as developed for the case A , 0. �

3.2.3 RV solutions in the border case

Let us consider equation (3.2) for which the condition

lim
t→∞

tα−1
∫
∞

t
p(s) ds =

1
α

(
α − 1
α

)α−1
(3.27)

is satisfied. Such an equation can be regarded as a perturbation of the generalized
Euler equation

(Φ(y′))′ +
γ

tα
Φ(y) = 0 (3.28)

with γ = γ̄ =
(
α−1
α

)α
. Although (3.28) is nonoscillatory, because it has a solution

y(t) = t(α−1)/α, its perturbation may be oscillatory or nonoscillatory depending on
the asymptotic behavior of the perturbed term as t → ∞, see Došlý, Řehák [28].
Our purpose here is to show the existence of a class of perturbations which preserve
the nonoscillation character of (3.28). The result can be seen as a generalization of
Theorem 2.4.

Theorem 3.3. Suppose that (3.27) holds. Put

Υ(t) = tα−1
∫
∞

t
p(s) ds −

1
α

(
α − 1
α

)α−1

and suppose that ∫
∞
|Υ(t)|

t
dt < ∞ (3.29)

and ∫
∞ Ψ(t)

t
dt < ∞, where Ψ(t) =

∫
∞

t

|Υ(s)|
s

ds. (3.30)
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Then equation (3.2) is nonoscillatory and has a normalized regularly varying solution
with index (α − 1)/α of the form y(t) = t(α−1)/αL(t) with L ∈ NSV and limt→∞ L(t) =
` ∈ (0,∞).

Proof. The solution is sought in the form

y(t) = exp
∫ t

T
Φ−1

(
γ̄ + Υ(s) + v(s)

sα−1

)
ds, γ̄ =

(
α − 1
α

)α
, (3.31)

for some T > 0 and v : [T,∞)→ R. The same argument as in the proof of the “if”
part of the previous theorem leads to the differential equation for v

(r(t)v)′ +
α − 1

t
r(t)F(t, v) = 0, (3.32)

where

r(t) = exp
(∫ t

1

αΦ−1(γ̄ + Υ(s)) − α + 1
s

ds
)

and
F(t, v) = |γ̄ + Υ(t) + v|β − βΦ−1(γ̄ + Υ(t))v − γ̄β. (3.33)

Choose t0 > 0 so that

|Υ(t)| ≤
γ̄

4
, (3.34)

t ≥ t0. Since

|Φ−1(γ̄ + Υ(t)) − α + 1| = α|(γ̄ + Υ(t))β−1
− γ̄β−1

| ≤ αm(α)|Υ(t)|,

t ≥ t0, for some constant m(α) > 0, we see in view of (3.29) that r is a slowly varying
function and tends to a finite positive limit as t → ∞. It follows that there exists
t1 ≥ t0 such that

r(s)/r(t) ≤ 2 (3.35)

for s ≥ t ≥ t1. We rewrite the function F(t, v) defined by (3.33) as F(t, v) = G(t, v) +
z(t), where

G(t, v) = |γ̄ + Υ(t) + v|β − βΦ−1(γ̄ + Υ(t))v − |γ̄ + Υ(t)|β

and z(t) = |γ̄+Υ(t)|β−γ̄β. As it is easily seen, there exist positive constants K(α),L(α)
and M(α) such that

|G(t, v)| ≤ K(α)v2, (3.36)∣∣∣∣∣∂G(t, v)
∂v

∣∣∣∣∣ ≤ L(α)|v| (3.37)

and |h(t)| ≤M(α)|Υ(t)| for t ≥ t1 and |v| ≤ γ̄/4. Let T > t1 be large enough so that

4(p − 1)M(α)Ψ(t) ≤
γ̄

4
, (3.38)
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t ≥ T,

16(α − 1)2K(α)M(α)
∫
∞

T

Ψ(s)
s

ds ≤ 1,

and

16(α − 1)2L(α)M(α)
∫
∞

T

Ψ(s)
s

ds ≤ 1. (3.39)

We want to solve the integral equation

v(t) =
α − 1
r(t)

∫
∞

t

r(s)
s

F(s, v(s)) ds, (3.40)

t ≥ T, which follows from (3.32), subject to the condition limt→∞ v(t) = 0. Let
CΨ[T,∞) denote the set of all continuous functions v on [T,∞) such that

‖v‖Ψ = sup
t≥T

|v(t)|
Ψ(t)

< ∞.

Clearly, CΨ[T,∞) is a Banach space equipped with the norm ‖v‖Ψ. Consider the
set Ω ⊂ CΨ[T,∞) and the mapping TΩ→ CΨ[T,∞) defined by

Ω = {v ∈ CΨ[T,∞) : |v(t)| ≤ 4(α − 1)M(α)Ψ(t), t ≥ T} (3.41)

and

T v(t) =
α − 1
r(t)

∫
∞

t

r(s)
s

F(s, v(s)) ds =
α − 1
r(t)

∫
∞

t

r(s)
s

[G(s, v(s)) + z(s)] ds,

t ≥ T. Using (3.35), (3.36) and (3.37), we see that

α − 1
r(t)

∫
∞

t

r(s)
s
|z(s)|ds ≤ 2(α − 1)

∫
∞

t

M(α)|Υ(s)|
s

ds = 2(α − 1)M(α)Ψ(t),

t ≥ T, and that

α − 1
r(t)

∫
∞

t

r(s)
s
|G(s, v(s))|ds ≤ 2(α − 1)

∫
∞

t

K(α)[4(α − 1)M(α)Ψ(s)]2

s
ds

= 32(α − 1)3K(α)M2(α)
∫
∞

t

Ψ2(s)
s

ds

≤ 32(α − 1)3K(α)M2(α)Ψ(t)
∫
∞

t

Ψ(s)
s

ds

≤ 32(α − 1)3K(α)M2(α)Ψ(t)
∫
∞

T

Ψ(s)
s

ds ≤ 2(α − 1)M(α)Ψ(t),
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t ≥ T. This shows that v ∈ Ω implies T v ∈ Ω, and hence T maps Ω into itself. If
u, v ∈ Ω, then using (3.37) we have

|T v(t) − Tu(t)| ≤
α − 1
r(t)

∫
∞

t

r(s)
s
|G(s, v(s)) − G(s,u(s))|ds

≤ 2(α − 1)
∫
∞

t

4(α − 1)L(α)M(α)Ψ(s)|v(s) − u(s)|
s

ds

= 8(α − 1)2L(α)M(α)
∫
∞

t

Ψ2(s)|v(s) − u(s)|
sΨ(s)

ds

≤ 8(α − 1)2L(α)M(α)Ψ(t)‖v − u‖Ψ

∫
∞

t

Ψ(s)
s

ds,

t ≥ T, from which, in view of (3.39), we conclude that T is a contraction mapping:
‖T v−Tu‖Ψ ≤ ‖v−u‖Ψ/2. Let v ∈ Ω be a unique fixed element ofT . Then v satisfies
(3.40), and hence (3.32), on [T,∞), and the function y defined by (3.31) provides a
nonoscillatory solution of (3.2) on [T,∞). Since Φ−1(γ̄ + Υ(t) + v(t))→ (α − 1)/p as
t→∞, y ∈ NRV((α − 1)/α), and y is expressed as y(t) = t(α−1)/αL(t), where

L(t) = exp
{∫ t

1

Φ−1(γ̄ + Υ(s) + v(s)) − γ̄β−1

s
ds

}
,

t ≥ T. Noting that |Υ(t) + v(t)| ≤ γ̄/2, t ≥ T, by (3.34) and (3.38), and applying the
Mean Value Theorem, we see with the use of (3.41) that |Φ−1(γ̄+Υ(t)+v(t))− γ̄β−1

| ≤

N(α)(|Υ(t)| + |Ψ(t)|), t ≥ T, for some constant N(α) > 0. This, combined with the
hypotheses (3.29) and (3.30), guarantees that L(t) tends to a finite positive limit as
t→∞. �

3.2.4 RB solutions

In the next theorem we somehow relax the condition on the existence of the limit in
(3.11) and (3.14), and the existence of aRB solution follows; an important role in the
proof is played by Proposition 3.1. The result generalizes Theorem 2.5. But observe
that here we have guaranteed the existence of (at least) one RB solution, while
in the linear case all eventually positive solutions are RB. As already indicated
above, the reason is that here we cannot use a reduction of order formula and the
fact that any solution is a linear combination of elements of the fundamental set.

Theorem 3.4. If

−
1
α

(
α − 1
α

)α−1
< lim inf

t→∞
tα−1

∫
∞

t
p(s) ds

≤ lim sup
t→∞

tα−1
∫
∞

t
p(s) ds <

1
α

(
α − 1
α

)α−1

holds, then equation (3.2) is nonoscillatory and has a normalized regularly bounded solu-
tion.
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Proof. If the assumption holds, then there exist positive constants t0 and a satisfying
(3.5) such that |tα−1P(t)| ≤ a, t ≥ t0. Put h(t) = at1−α. Then it can be easily verified
that h satisfies |P(t)| ≤ h(t) and (3.4). So, by Proposition 3.1, (3.2) has a nonoscillatory
solution of the form

y(t) = exp
{∫ t

t0

Φ−1(v(s) + P(s)) ds
}

= exp
{∫ t

t0

Φ−1[sα−1(v(s) + P(s))]
s

ds
}
,

(3.42)

t ≥ t0, with v satisfying (3.8). Since∣∣∣Φ−1[tα−1(v(t) + σ(t))]
∣∣∣ ≤ αβ−1(tα−1h(t))β−1 = (aα)β−1,

t ≥ t0, the solution y is a normalizedRB function by the representation theorem. �

3.3 More precise information about SV solutions

The observations in this section are based on the paper [99] by Kusano, Marić, Tani-
gawa. We will need the statement of Proposition 3.1, with a slight modification,
namely that condition (3.4) is replaced by the more general one:∫

∞

t
hβ(s) ds ≤

1
α − 1

aβ−1(t)h(t), t ≥ t0,

where a(t) is a continuous nonincreasing function satisfying

0 < a(t) ≤ a <
1
α

(
α − 1
α

)α−1

for some constant a. The proof of such modified proposition is almost the same as
that of the original one, and so it is omitted.

Theorem 3.5. Suppose that the hypotheses of Proposition 3.1 with the above modification
are satisfied. Let there exist a positive integer n such that∫

∞

an(β−1)(t)hβ−1(t) dt < ∞ if 1 < α ≤ 2, (3.43)∫
∞

an(β−1)2
(t)hβ−1(t) dt < ∞ if α > 2. (3.44)

Then, for the solution (3.6) of (3.2), the following asymptotic formula holds for t→∞

y(t) ∼ B exp
{∫ t

t0

Φ−1[vn−1(s) + P(s)] ds
}
, (3.45)
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where B is a positive constant. Here the sequence {vn(t)} of successive approximations is
defined by

v0(t) = 0, vn(t) = (α − 1)
∫
∞

t
|vn−1(s) + P(s)|β ds, n = 1, 2, . . . . (3.46)

Proof. Let y be the solution given by (3.6). Recall that the function v used in (3.6)
has been constructed as the fixed element in Ch[t0,∞) of the contractive mapping
T defined by (3.9). The standard proof of the contraction mapping principle
shows that the sequence {vn(t)} defined by (3.46) converges to v(t) uniformly on
[t0,∞). To see how fast vn(t) approaches v(t) we proceed as follows. First, note that
|vn(t)| ≤ (α − 1)h(t), t ≥ t0, n = 1, 2, . . . . By definition, we have

|v1(t)| = (α − 1)
∫
∞

t
|P(s)|β ds ≤ (α − 1)

∫
∞

t
hβ(s) ds ≤ aβ−1(t)h(t),

and

|v2(t) − v1(t)| ≤ (α − 1)
∫
∞

t

∣∣∣|v1(s) + P(s)|β − |P(s)|β
∣∣∣ ds

≤ (α − 1)β
∫
∞

t
[αh(s)]β|v1(s)|ds

≤ αβ
∫
∞

t
aβ−1(s)hβ(s) ds ≤ αβaβ−1(t)

∫
∞

t
hβ(s) ds

≤ (β − 1)αβa2(β−1)(t)h(t) ≤ γβ−1
α

(
a(t)
γα

)2(β−1)

h(t)

for t ≥ t0, where γα = 1
α

(
α−1
α

)α−1
. Assuming that

|vn(t) − vn−1(t)| ≤ γβα

(
a(t)
γα

)n(β−1)

h(t), (3.47)

t ≥ t0, for some n ∈N, we compute

|vn+1(t) − vn(t)| ≤ (α − 1)
∫
∞

t

∣∣∣|P(s) + vn(s)|β − |P(s) + vn−1(s)|β
∣∣∣ ds

≤ (α − 1)β
∫
∞

t
[αh(s)]β−1

|vn(s) − vn−1(s)|ds

= αβ
∫
∞

t
γ
β−1
α

(
a(s)
γα

)n(β−1)

hβ(s) ds

≤ αβγ
β−1
α

(
a(t)
γα

)n(β−1) ∫ ∞

t
hβ(s) ds

≤ αβγ
β−1
α

(
a(t)
γα

)n(β−1)

(β − 1)aβ−1(t)h(t)

= γ
β−1
α

(
a(t)
γα

)n(β−1)

h(t),
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t ≥ t0, which establishes the validity of (3.47) for all integers n ∈N. Now we have

v(t) = vn−1(t) +

∞∑
k=n

[vk(t) − vk−1(t)],

from which, due to (3.47), it follows that

|v(t) − vn−1(t)| ≤ γ
β−1
α

(
a(t)
γα

)k(β−1)

h(t)

≤ γ
β−1
α

(
a(t)
γα

)n(β−1) ∞∑
k=0

(
a
γα

)k

h(t) (3.48)

= γα

(
a(t)
γα

)n(β−1) γα
γα − a

h(t) = Kan(β−1)(t)h(t),

where K is a constant depending only on α and n. Using (3.6) and (3.48), we obtain

y(t)
(
exp

{∫ t

t0

Φ−1[P(s) + vn−1(s)] ds
})−1

= exp
{∫ t

t0

(
Φ−1[P(s) + v(s)] −Φ−1[P(s) + vn−1(s)]

)
ds

}
. (3.49)

Let 1 < α ≤ 2. Then, by the Mean Value Theorem and (3.48),∣∣∣Φ−1[P(t) + v(t)] −Φ−1[P(t) + vn−1(t)]
∣∣∣ ≤ (β − 1)[αh(t)]β−2

|v(t) − vn−1(t)|

≤ Nan(β−1)(t)hβ−1(t), (3.50)

t ≥ t0, where N is a constant depending on α and n. Let α > 2. Then, using (3.48)
and the inequality |aλ− bλ| ≤ 2|a− b|λ holding for λ ∈ (0, 1) and a, b ∈ R, we see that∣∣∣Φ−1[P(t) + v(t)] −Φ−1[P(t) + vn−1(t)]

∣∣∣ ≤ 2|v(t) − vn−1(t)|β−1

≤ Man(β−1)2
(t)hβ−1(t),

(3.51)

t ≥ t0, where M is a constant depending on α and n. Combining (3.49) with (3.50)
or (3.51) according as 1 < α ≤ 2 or α > 2, and using (3.43) or (3.44), we conclude
that the right-hand side of (3.49) tends to a constant B > 0 as t→∞, which implies
that y(t) has the desired asymptotic behavior (3.45). �

Corollary 3.1. Suppose that (3.11) holds and that the function a(t) = ϕ(t), where ϕ(t) is
defined by (3.12), satisfies∫

∞ a(n+1)(β−1)(t)
t

dt < ∞ if 1 < α ≤ 2, (3.52)∫
∞ a(n+α−1)(β−1)2

t
dt < ∞ if α > 2. (3.53)

Then the formula (3.45) holds for the slowly varying solution y(t) of (3.2).
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Proof. The conclusion follows from the previous theorem combined with the ob-
servation that in this case

an(β−1)(t)hβ−1(t) =
a(n+1)(β−1)(t)

t
and an(β−1)2

(t)hβ−1(t) =
a(n+α−1)(β−1)2

(t)
t

according to whether 1 < α ≤ 2 or α > 2. �

3.4 More general case

It is a natural question whether a generalization of (some of) the results from
Section 3.2 to equation (3.1) is possible.

First idea which can come into mind is a transformation into equation of the
form (3.2). Unfortunately, in contrast to the linear case we do not have a (linear)
transformation of dependent variable y = hu at disposal. Thus it is impossible
to “kill” the coefficient r in general. Equation (3.1) can be transformed into an
equation of the form (3.2) with preserving unboundedness and the form of the
interval only when

∫
∞

a r1−β(s) ds = ∞. Indeed, we introduce new independent

variable by s = ξ(t) =
∫ t

a r1−β(s) ds and new function x(s) = y(t). Then (3.1) is
transformed into

d
ds

(
r(ξ−1(s))Φ(ξ′(ξ−1(s)))Φ

( d
ds

x
))

+
p(ξ−1(s))
ξ′(ξ−1(s))

Φ(x) = 0,

where ξ−1 is the inverse of ξ, or

d
ds

(
Φ

( d
ds

x
))

+
p(ξ−1(s))

r1−β(ξ−1(s))
Φ(x) = 0.

Jaroš, Kusano, and Tanigawa in [66] used a different approach, based on the
same idea as for the linear equation in Theorems 2.8 and 2.9, namely utilizing the
concept of generalized varying functions (see Definition 1.10) with the combination
of the approach described in Section 3.2. The two (logical) cases are distinguished:∫

∞

a
r1−β(s) ds = ∞ (3.54)

and ∫
∞

a
r1−β(s) ds < ∞. (3.55)

We denote Rα(t) =
∫ t

a r1−β(s) ds in case (3.54) and R̃α(t) =
∫
∞

t r1−β(s) ds in case (3.55).
Let λ1 < λ2 denote the two real roots of the equation (3.13). A generalization

of Theorem 3.1 and of Theorem 3.2 reads as follows; at the same time it can be
viewed as a generalization of Theorem 2.8-(i).
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Theorem 3.6. Let (3.54) hold. Equation (3.1) is nonoscillatory and has two solutions
y1, y2 such that yi(t) ∈ NRVRα(Φ−1(λi)), i = 1, 2, if and only if

lim
t→∞

Rα−1
α (t)

∫
∞

t
p(s) ds = A ∈

(
−∞,

1
α

(
α − 1
α

)α−1)
. (3.56)

Proof. Since the proof uses essentially the same ideas as the proof of Theorem 3.1
and of Theorem 3.2, we mention only a few facts. Denoteω(t) = Rα−1

α (t)
∫
∞

t p(s) ds−
A. The solutions yi, when λ1 , 0, are sought in the form

yi(t) = exp
{∫ t

ti

Φ−1
(
λi + ω(s) + vi(s)

r(s)Rα−1
α (s)

)
ds

}
,

i = 1, 2. The function vi is chosen in such a way that wi = (λi + ω(t) + vi)/Rα−1

satisfies the generalized Riccati equation

w′ + p(t) + (α − 1)r1−β(t)|w|β = 0. (3.57)

To find the desired vi, the contraction mapping theorem is used.
In the case when λ1 = 0 (i.e., A = 0), the solution y1 is sought in the form

y1(t) = exp


∫ t

t1

Φ−1

Rα−1
α (s)

∫
∞

s p(τ) dτ + w1(s)

r(s)Rα−1
α (s)

 ds

 ,
where the differential equation for w1 has the form

(
w1

Rα−1
α (s)

)′
+

(α − 1)
∣∣∣Rα−1
α (t)

∫
∞

t p(τ) dτ + w1(s)
∣∣∣β

rβ−1(s)Rαα(s)
= 0.

�

The next result is a generalization of Theorem 3.3 in case (3.54); at the same
time it generalizes Theorem 2.8-(ii). We assume

lim
t→∞

Rα−1(t)
∫
∞

t
p(s) ds =

1
α

(
α − 1
α

)α−1
. (3.58)

Equation (3.1) with p satisfying this condition can be regarded as a perturbation
of the generalized Euler equation

(r(t)Φ(y′))′ +
γ̄

rβ−1(t)Rαα(t)
Φ(y) = 0, γ̄ =

(
α − 1
α

)α
,

which is nonoscillatory. We show that (3.1) has a solution inNRVRα provided the
perturbation is small in some sense.
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Theorem 3.7. Suppose that (3.54) and (3.58) hold. Put

Υ(t) = Rα−1
α (t)

∫
∞

t
p(s) ds −

1
α

(
α − 1
α

)α−1

and suppose that ∫
∞

|Υ(t)|
rβ−1(t)Rα(t)

dt < ∞

and ∫
∞ Ψ(t)

rβ−1(t)Rα(t)
dt < ∞, where Ψ(t) =

∫
∞

t

|Υ(s)|
rβ−1(s)Rα(s)

ds.

Then equation (3.1) is nonoscillatory and has a solution y ∈ NRVRα((α − 1)/α) of the
form y(t) = R(α−1)/α

α (t)L(t) with L ∈ NSVRα and limt→∞ L(t) = ` ∈ (0,∞).

Proof. Similarly as in the previous proof we omit details since it uses similar
arguments as the proof of Theorem 3.3. Note just that we look for a solution of
(3.1) expressed in the form

y(t) = exp
{∫ t

ti

Φ−1
(
γ̄ + Υ(s) + v(s)

r(s)Rα−1
α (s)

)
ds

}
,

where v is desired to satisfy a certain Riccati type equation; the existence of v is
proved by means of the contraction mapping theorem. �

We now turn to the case where r in (3.1) satisfies (3.55). We give a half-
linear extension of Theorem 2.9-(i), which is at the same time a counterpart of
Theorem 3.6.

Let σ1 < σ2 denote the two real roots of the equation |σ|β + σ + B = 0.

Theorem 3.8. Let (3.55) hold. Equation (3.1) is nonoscillatory and has two solutions
y1, y2 such that yi(t) ∈ NRV1/R̃α(Φ−1(σi)), i = 1, 2, if and only if

lim
t→∞

1
R̃α(t)

∫
∞

t
R̃αα(s)p(s) ds = B ∈

(
−∞,

(
α − 1
α

)α)
.

Proof. The proof uses similar ideas as the proof of Theorem 3.7. Therefore we only
mention a few facts. The solutions yi, i = 1, 2, when σ2 , 0, are sought in the form

yi(t) = exp
{∫ t

ti

Φ−1
(
σi + ω(s) + vi(s)

r(s)R̃α−1
α (s)

)
ds

}
,

i = 1, 2, where ω(t) = 1
R̃α(t)

∫
∞

t R̃αα(s)p(s) ds − B. The function vi is chosen in such a

way that wi = (σi +ω(t) + vi)/R̃α−1 satisfies the generalized Riccati equation (3.57).
To find the desired vi, the contraction mapping theorem is used again. The case
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when σ2 = 0 (i.e., B = 0) is examined separately; the differential equation for w2 to
be solved has the form

w′2 +
α − 1

rβ−1(t)R̃α(t)
w2 + +

α − 1
rβ−1(t)R̃α(t)

[|ω(t) + w2|β + βω(t)] = 0.

�

The counterpart of Theorem 3.7 which is at the same time a generalization of
Theorem 2.9-(ii) reads as follows. Equation (3.1) can be seen again as a perturbation
of certain Euler type equation, this time of the form

(r(t)Φ(y′))′ +
γ̄

rβ−1(t)R̃αα(t)
Φ(y) = 0.

Theorem 3.9. Let (3.55) hold. Assume that

lim
t→∞

1
R̃α(t)

∫
∞

t
R̃αα(s)p(s) ds =

(
α − 1
α

)α
.

Put

Υ(t) =
1

R̃α(t)

∫
∞

t
R̃αα(s)p(s) ds −

(
α − 1
α

)α
and suppose that ∫

∞
|Υ(t)|

rβ−1(t)R̃α(t)
dt < ∞

and ∫
∞ Ψ(t)

rβ−1(t)R̃α(t)
dt < ∞, where Ψ(t) =

∫
∞

t

|Υ(s)|
rβ−1(s)R̃α(s)

ds.

Then equation (3.1) is nonoscillatory and has a solution y ∈ NRV1/R̃α(−(α− 1)/α) of the
form y(t) = R̃(α−1)/α

α (t)L(t) with L ∈ NSV1/R̃α and limt→∞ L(t) = ` ∈ (0,∞).

Proof. We omit details again. Note only that we seek a solution of (3.1) expressed
in the form

y(t) = exp
{∫ t

ti

Φ−1
(
Υ(s) − γ̄ + v(s)

r(s)R̃α−1
α (s)

)
ds

}
,

where v is desired to satisfy a certain Riccati type equation; the existence of v is
proved by means of the contraction mapping theorem. �

3.5 Asymptotic formulas for nonoscillatory solutions of
conditionally oscillatory half-linear equations

In this section which is based on the paper [137] by Pátı́ková we investigate
asymptotic properties of nonoscillatory solutions of a special conditionally oscilla-
tory half-linear second order differential equation, which was constructed in [29]
as a perturbation of equation (3.1).
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Throughout this section we suppose that (3.1) is nonoscillatory. Let d(t) be a
positive continuous function, we say that the equation

(r(t)Φ(x′))′ + [p(t) + µd(t)]Φ(x) = 0 (3.59)

is conditionally oscillatory if there exists a constant µ0 > 0 such that (3.59) is oscil-
latory for µ > µ0 and nonoscillatory for µ < µ0. Let h(t) be a positive solution
of nonoscillatory equation (3.1) such that h′(t) , 0 on some interval of the form
[T0,∞) and denote

R(t) := r(t)h2(t)|h′(t)|α−2, G(t) := r(t)h(t)Φ(h′(t)). (3.60)

Under the assumptions ∫
∞ dt

R(t)
= ∞, lim inf

t→∞
|G(t)| > 0,

the authors of [29] constructed a conditionally oscillatory equation seen as a per-
turbation of (3.1) in the form

(r(t)Φ(x′))′ +

p(t) +
µ

hα(t)R(t)
(∫ t

R−1(s) ds
)2

Φ(x) = 0. (3.61)

The critical oscillation constant of this equation is µ0 = 1
2β , where β is the conjugate

number to α. In [29] it is also shown that (3.61) has for this constant µ = µ0 a
solution with the asymptotic formula

x(t) = h(t)
(∫ t

R−1(s) ds
) 1
α
1 + O

(∫ t

R−1(s) ds
)−1

 as t→∞. (3.62)

The aim of this section is to present more precise asymptotic formulas in terms
of slowly and regularly varying functions in the case where the constant µ is less
than or equal to 1

2β .
The “perturbation approach”, when the considered equation is regarded as a

perturbation of another half-linear equation, has been also used in [135]. There,
the asymptotics of nonoscillatory solutions of

(Φ(x′))′ +
γα
tα

Φ(x) + p̃(t)Φ(x) = 0, (3.63)

where γα =
(
α−1
α

)α
, was established under the assumption

lim
t→∞

log t
∫
∞

t
p̃(s)sα−1 ds ∈

(
−∞,

1
2

(
α − 1
α

)α−1]
.
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Equation (3.63) has been seen as a perturbation of the half-linear Euler type equa-
tion

(Φ(x′))′ +
γα
tα

Φ(x) = 0 (3.64)

with the critical constant γα.
It is well-known (see, e.g., [28]), that similarly as in the linear oscillation theory,

the nonoscillation of equation (3.1) is equivalent to the solvability of a Riccati
type equation. In particular, if x is an eventually positive or negative solution
of the nonoscillatory equation (3.1) on some interval of the form [T0,∞), then
w(t) = r(t)Φ

(
x′
x

)
solves the Riccati type equation

w′ + p(t) + (α − 1)r1−β(t)|w|β = 0. (3.65)

Conversely, having a solution w(t) of (3.65) for t ∈ [T0,∞), the corresponding
solution of (3.1) can be expressed as

x(t) = C exp
{∫ t

r1−β(s)Φ−1(w) ds
}
,

where Φ−1 is the inverse function of Φ and C is a constant.
Using the concept of perturbations it appears useful to deal with the so called

modified (or generalized) Riccati equation. Let h be a positive solution of (3.1) and
wh(t) = r(t)Φ

(
h′
h

)
be the corresponding solution of the Riccati equation (3.65). Let

us consider another nonoscillatory equation

(r(t)Φ(x′))′ + P(t)Φ(x) = 0 (3.66)

and let w(t) be a solution of the Riccati equation associated with (3.66). Then
v(t) = (w(t) − wh(t))hα(t) solves the modified Riccati equation

v′ + (P(t) − p(t))hα + αr1−βhαP̃(Φ−1(wh),w) = 0, (3.67)

where

P̃(u, v) :=
|u|α

α
− uv +

|v|β

β
≥ 0,

with the equality P̃(u, v) = 0 if and only if v = Φ(u). We deal with this equation in
a slightly different, but still equivalent, form

v′ + (P(t) − p(t))hα + (α − 1)r1−βh−β|G|βF
( v
G

)
= 0, (3.68)

where G(t) is defined by (3.60) and

F(u) = |u + 1|β − βu − 1. (3.69)

Next we apply the perturbation principle combined with the (modified) Riccati
technique to get asymptotical results for (3.61) with µ < 1

2β and µ = 1
2β .
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Theorem 3.10. Suppose that (3.1) is nonoscillatory and possesses a positive solution h(t)
such that h′(t) , 0 for large t and let ∫

∞ dt
R(t)

= ∞, (3.70)

and
lim inf

t→∞
|G(t)| > 0. (3.71)

If µ < 1
2β , then the conditionally oscillatory equation (3.61) has a pair of solutions given

by the asymptotic formula

xi = h(t)
(∫ t

R−1(s) ds
)(β−1)λi

Li(t),

where λi are zeros of the quadratic equation

β

2
λ2
− λ + µ = 0 (3.72)

and Li(t) are generalized normalized slowly varying functions of the form

Li(t) = exp


∫ t εi(s)

R(s)
∫ s

R−1(τ) dτ
ds


and εi(t)→ 0 for t→∞.

Proof. We are looking for solutions of the modified Riccati equation associated
with (3.61), which reads as

v′(t) +
µ

R(t)
(∫ t

R−1(s) ds
)2 + (α − 1)r1−β(t)h−β(t)|G(t)|βF

(
v(t)
G(t)

)
= 0, (3.73)

where G is defined by (3.60) and F by (3.69).
Assumptions (3.70) and (3.71) imply the convergence of the integral∫

∞

r1−β(t)h−β(t)|G(t)|βF
(

v(t)
G(t)

)
dt,

from which it follows (see [29]) that v(t)→ 0 and v(t)
G(t) → 0 as t→∞.

Let C0[T,∞) be the set of all continuous functions on the interval [T,∞) (T will
be specified later) which converge to zero a t → ∞ and let us consider a set of
functions

V = {ω ∈ C0[T,∞) : |ω(t)| < ε, t ≥ T},
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where ε > 0 is so small that

1√
1 − 2qµ

(q + 1) ε <
1
2
. (3.74)

Let us also observe that the inequality

1√
1 − 2qµ

(q
2

+ 1
)
ε ≤ 1 (3.75)

is implied. Denote the roots of the quadratic equation (3.72) for µ < 1
2q as

λ1 =
1 −

√
1 − 2βµ
β

, λ2 =
1 +

√
1 − 2βµ
β

.

We assume that two solutions of the modified Riccati equation (3.73) are in the
form

vi(z, t) :=
λi + z(t)∫ t
R−1(s) ds

,

for t ∈ [T,∞) and z ∈ V, i = 1, 2. Substituting this function and its derivative into
(3.73), we have

z′(t) +
µ − λi − z(t)

R(t)
∫ t

R−1(s) ds
+ (α − 1)r1−β(t)h−β(t)|G(t)|βF

(
vi(z, t)
G(t)

) ∫ t

R−1(s) ds = 0

which can be rewritten as

z′(t) +
(−1 + λiβ)z(t)

R(t)
∫ t

R−1(s) ds
+

1

R(t)
∫ t

R−1(s) ds
Ei(z, t) = 0, (3.76)

where

Ei(z, t) := µ − λi − λiβz(t) + (α − 1)
(∫ t

R−1(s) ds
)2

G2(t)F
(

vi(z, t)
G(t)

)
.

This means that looking for solutions vi of the modified Riccati equation (3.73) is
equivalent to looking for solutions zi of the equation (3.76). In the next we shall
show that two solutions of (3.76) can be found through the Banach fixed-point
theorem used onto suitable integral operators.

First, let us turn our attention to the behavior of the function F(u), which
plays an important role in estimating of certain useful expressions. Studying the
behavior of F(u) and F′(u) for u in a neighborhood of 0, we have

F(u) =
F′′(0)

2
u2 +

F′′′(ζ)
6

u3

=
β(β − 1)

2
u2 +

β(β − 1)(β − 2)
6

|1 + ζ|β−3 sgn(1 + ζ)u3,
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where ζ is between 0 and u. For |u| < 1
2 and hence also |ζ| < 1

2 there exists a positive
constant Mq such that∣∣∣∣∣β(β − 2)

6
|1 + ζ|β−3 sgn(1 + ζ)

∣∣∣∣∣ ≤Mβ for β > 1.

Therefore ∣∣∣∣∣F(u) −
β(β − 1)

2
u2

∣∣∣∣∣ ≤ (β − 1)Mβ|u|3. (3.77)

Similarly,

F′(u) = F′′(0)u +
F′′′(ζ′)

2
u2

= β(β − 1)u +
β(β − 1)(β − 2)

2
|1 + ζ′|β−3 sgn(1 + ζ′)u2,

where ζ′ is between 0 and u. Again, considering |ζ′| < 1
2 we have∣∣∣F′(u) − β(β − 1)u

∣∣∣ ≤ 3(β − 1)Mβ|u|2. (3.78)

Now, let us denote J(t) :=
∫ t

R−1(s) ds, then the estimate of the function Ei(z, t)
for z ∈ V, reads as

|Ei(z, t)| =

∣∣∣∣∣∣µ − λi − λiβz(t) +
β

2
J2(t)v2

i (z, t) + (α − 1)J2(t)G2(t)F
(

vi(z, t)
G(t)

)
−
β

2
J2(t)v2

i (z, t)
∣∣∣∣∣ ≤ |µ − λi − λiβz(t) +

β

2
(λi + z(t))2

|

+

∣∣∣∣∣∣∣(α − 1)J2(t)G2(t)

F (
vi(z, t)
G(t)

)
−
β(β − 1)

2

(
vi(z, t)
G(t)

)2
∣∣∣∣∣∣∣

≤
β

2
|z(t)|2 +

Mβ|λi + z(t)|3

|G(t)||J(t)|
≤
β

2
|z(t)|2 +

KMβ|λi + z(t)|3

|J(t)|
,

where (3.77) was used for u = vi
G and K := supt≥T

1
|G(t)| is a finite constant for T

sufficiently large because of (3.71). According to (3.70) there exists T1 such that the
last term in the previous inequality is less than ε2 and therefore

|Ei(z, t)| ≤
q
2
ε2 + ε2

≤ ε2
(q
2

+ 1
)

(3.79)

for t ≥ T1. Furthermore, for z1, z2 ∈ V we have

|Ei(z1, t) − Ei(z2, t)| =

∣∣∣∣∣ − λiβ(z1 − z2)

+ (p − 1)J2(t)G2(t)
[
F
(

vi(z1, t)
G(t)

)
− F

(
vi(z2, t)

G(t)

)]∣∣∣∣∣∣ ,
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which, by the mean value theorem with a suitable z(t) ∈ V, becomes

=

∣∣∣∣∣ − λiq(z1 − z2) + βJ(t)vi(z, t)(z1 − z2)

+ (α − 1)J(t)G(t)F′
(

vi(z, t)
G(t)

)
(z1 − z2) − βJ(t)vi(z, t)(z1 − z2)

∣∣∣∣∣∣
≤

∣∣∣∣∣ − λiβ + βJ(t)vi(z, t)

+ (α − 1)J(t)G(t)
(
F′

(
vi(z, t)
G(t)

)
− β(β − 1)

vi(z, t)
G(t)

)∣∣∣∣∣∣ · ‖z1 − z2‖

≤

β|z(t)| +

∣∣∣∣∣∣3KMq(λi + z(t))2

J(t)

∣∣∣∣∣∣
 · ‖z1 − z2‖,

where (3.78) was used. Similarly as in the previous estimate, there exists T2 such
that the middle term in the last row of the inequality is less than ε and hence

|Ei(z1, t) − Ei(z2, t)| ≤ ε(β + 1) · ‖z1 − z2‖ (3.80)

for t ∈ [T2,∞).
Now, let us consider the pair of functions

ri(t) := exp


∫ t

−1 + λiβ

R(s)
∫ s

R−1(τ) dτ
ds

 , i = 1, 2.

Then equation (3.76) is equivalent to

(ri(t)z(t))′ + ri(t)
1

R(t)
∫ t

R−1(s) ds
Ei(z, t) = 0. (3.81)

For i = 1, we have the function

r1(t) = exp


∫ t

−1 + λ1β

R(s)
∫ s

R−1(τ) dτ
ds

 = exp


∫ t −

√
1 − 2βµ

R(s)
∫ s

R−1(τ) dτ
ds


and it is easy to see that r1(t)→ 0 for t→∞.

Finally, let us define the integral operator F1 on the set of functions V by

(F1z)(t) =
1

r1(t)

∫
∞

t

r1(s)

R(s)
∫ s

R−1(τ) dτ
E1(z, s) ds.

We observe that ∫
∞

t

r1(s)

R(s)
∫ s

R−1(τ) dτ
ds =

r1(t)√
1 − 2βµ

.
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Taking T = max{T1,T2}, by (3.79) and (3.74) we have

|(F1z)(t)| ≤
1

r1(t)

∫
∞

t

r1(s)

R(s)
∫ s

R−1(τ) dτ
|E1(z, s)|ds

≤
1√

1 − 2βµ

(
β

2
+ 1

)
ε2
≤ ε,

which means that F1 maps the set V into itself, and by (3.80) and (3.75) we see that

|(F1z1)(t) − (F1z2)(t)| ≤
1

r1(t)

∫
∞

t

r1(s)

R(s)
∫ s

R−1(τ) dτ
|E1(z1, s) − E1(z2, s)|ds

≤ ‖z1 − z2‖
1√

1 − 2βµ
ε(β + 1) <

1
2
‖z1 − z2‖,

which implies that F1 is a contraction. Using the Banach fixed-point theorem we
can find a function z1(t), that satisfies z1 = F1z1. That means that z1(t) is a solution
of (3.81) and also of (3.76) and v1(t) =

λ1+z1(t)∫ t
R−1 ds

is a solution of (3.73). For i = 2 we

have

r2(t) = exp


∫ t

−1 + λ2β

R(s)
∫ s

R−1(τ) dτ
ds

 = exp


∫ t

√
1 − 2qµ

R(s)
∫ s

R−1(τ) dτ
ds


and we define an integral operator F2 by

(F2z)(t) = −
1

r2(t)

∫ t r2(s)

R(s)
∫ s

R−1(τ) dτ
E2(z, s) ds.

Since ∫ t r2(s)

R(s)
∫ s

R−1(τ) dτ
ds =

r2(t) − c√
1 − 2βµ

,

where c is a positive suitable constant, the inequality

1
r2(t)

∫ t r2(s)

R(s)
∫ s

R−1(τ) dτ
ds ≤

1√
1 − 2βµ

holds for t sufficiently large, as r2(t) → ∞ for t → ∞. Taking T = max{T1,T2}, the
estimates for the operator F2 are the same as in the previous case and we can find
a fixed point z2(t) satisfying F2z2 = z2. Thus z2(t) solves (3.81) and v2(t) =

λ2+z2(t)∫ t
R−1 ds

solves the modified Riccati equation (3.73).
Expressing the solutions of the “standard” Riccati equation for (3.61) corre-

sponding to the solutions vi(zi, t) of the modified Riccati equation, we have

wi(t) = h−α(t)vi(zi, t) + wh(t) = wh(t)
(
1 +

vi(zi, t)
hα(t)wh(t)

)
= wh(t)

1 +
λi + zi(t)

hα(t)wh(t)
∫ t

R−1 ds

 = wh(t)

1 +
λi + zi(t)

G(t)
∫ t

R−1(s) ds

 .
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Since solutions of (3.61) are given by the formula

x(t) = exp
{∫ t

r1−β(s)Φ−1(w) ds
}
,

we need to express

r1−β(t)Φ−1(wi) =
h′(t)
h(t)

1 +
λi + zi(t)

G(t)
∫ t

R−1(s) ds


β−1

=
h′(t)
h(t)

1 + (β − 1)
λi + zi(t)

G(t)
∫ t

R−1(s) ds
+ o

 λi + zi(t)

G(t)
∫ t

R−1(s) ds




=
h′(t)
h(t)

+
(β − 1)λi

R(t)
∫ t

R−1(s) ds

+
(β − 1)zi(t)

R(t)
∫ t

R−1(s) ds
+ o

 λi + zi(t)

R(t)
∫ t

R−1(s) ds

 .
Because

o

 λi + zi(t)

R(t)
∫ t

R−1(s) ds

 =

R(t)
∫ t

R−1(s) ds o
(

λi+zi(t)

R(t)
∫ t

R−1(s) ds

)
R(t)

∫ t
R−1(s) ds

=
o(λi + zi(t))

R(t)
∫ t

R−1(s) ds

holds for large t, the pair of solutions of (3.61) for i = 1, 2 is in the form

xi(t) = exp

ln h(t) + ln
(∫ t

R−1(s) ds
)(β−1)λi

+

∫ t (β − 1)zi(s) + o(λi + zi(s))

R(s)
∫ s

R−1(τ) dτ

 .
As zi ∈ V and hence zi(t) → 0 for t → ∞, the statement of the theorem holds for
εi(t) = (β − 1)zi(t) + o(λi + zi(t)). �

Now let us present the asymptotic formula in case µ = 1
2β , which gives an

improved version of (3.62).

Theorem 3.11. Let the assumptions of the previous theorem be satisfied and let µ = 1
2q .

Then equation (3.61) has a solution of the form

x(t) = h(t)
(∫ t

R−1(s) ds
) 1

p

L(t), (3.82)
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where L(t) is a generalized normalized slowly varying function of the form

L(t) = exp


∫ t ε(s)

R(s)
∫ s

R−1(τ) dτ
ds


and ε(t)→ 0 for t→∞.

Proof. For µ = 1
2β the quadratic equation (3.72) has the double root λ = 1

β . We
assume the solution of modified Riccati equation to be in the form (for z ∈ V)

v(z, t) =

1
β + z(t)∫ t
R−1(s) ds

,

which gives, after substituting into the modified Riccati equation (3.73) for µ = 1
2β ,

z′(t) +
−z(t) − 1

2β

R(t)
∫ t

R−1(s) ds
+ (α − 1)r1−β(t)h−β(t)|G(t)|βF

(
v(z, t)
G(t)

) ∫ t

R−1(s) ds = 0.

Let us denote

E(z, t) = −z(t) −
1

2β
+ (α − 1)

(∫ t

R−1(s) ds
)2

G2(t)F
(

v(z, t)
G(t)

)
and let us consider an integral operator F3

(F3z)(t) =

∫
∞

t

1

R(s)
∫ s

R−1(τ) dτ
E(z, s) ds

on a set of continuous functions

V = {ω ∈ C0[T,∞) : |ω(t)| < ε, t ≥ T},

where T and ε are to be established similarly as in the proof of the previous
theorem. Then the solution of modified Riccati equation and also the solution of
the studied equation can be found in almost the same manner as for the previous
statement. �

Remark 3.1. If r(t) ≡ 1, p(t) = γαt−α and h(t) = t
α−1
α then the conditionally oscillatory

equation (3.61) with µ = 1
2β , seen as a perturbation of the Euler equation (3.64),

becomes the Euler-Weber (or alternatively Riemann-Weber) half-linear differential
equation

(Φ(x′))′ +
[
γα
tα

+
µα

tα ln2 t

]
Φ(x) = 0

with the so-called critical coefficient µp = 1
2

(
α−1
α

)α−1
. The asymptotic formula

(3.82) then reduces to the formula given in [135, Theorem 2].
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Remark 3.2. For the Euler-Weber half-linear equation also the asymptotic formula
for its second linearly independent solution is known (see [136]). An open question
remains whether the second linearly independent solution of (3.61) with µ = 1

2β
could be found in a similar form

x2(t) = h(t)
(∫ t

R−1(s) ds
) 1
α
(
ln

(∫ t

R−1(s) ds
)) 2

α

L2(t),

where

L2(t) = exp


∫ t ε2(s)

R(s)
∫ s

R−1(τ) dτ ln
(∫ s

R−1(τ) dτ
) ds


and ε2(t)→ 0 as t→∞.

3.6 De Haan type solutions

3.6.1 Solutions in the class Γ

We consider the equations

(r(t)Φ(y′))′ = p(t)Φ(y), (3.83)

and
(Φ(y′))′ = p(t)Φ(y), (3.84)

where r, p are positive continuous functions on [a,∞). In this subsection we deal
with solutions of (3.84) which are shown to be in the class Γ, but RV solutions are
also examined. The results are taken from [147] by Řehák. Later we briefly discuss
possible extensions (based on Řehák, Taddei [150]).

Because of the sign condition on p, equation (3.83) is nonoscillatory by the
Sturm type comparison theorem; it suffices to compare (3.83) with (r(t)Φ(y′))′ = 0.
For a (nonoscillatory) solution y of (3.83) it holds, y(t)y′(t) > 0 or y(t)y′(t) < 0
eventually. Without loss of generality we may work just with positive solutions.
Denote

M+ = {y : y is a solution of (3.83), y(t) > 0, y′(t) > 0 for large t}.

Under our sign condition, the classM+ is nonempty. Moreover, ∀(a0, a1) ∈ (0,∞) × (0,∞)∀t0 sufficiently
large ∃y ∈M+ : y(t0) = a0, y′(t0) = a1.

(3.85)

Further, denote M+
B = {y ∈ M+ : limt→∞ y(t) < ∞} and M+

∞ = {y ∈ M+ :
limt→∞ y(t) = ∞}. Clearly,M+ =M+

B ∪M
+
∞. Set

J =

∫
∞

a
r1−β(t)

(∫ t

a
p(s) ds

)β−1

dt and Jr =

∫
∞

a
r1−β(s) ds.
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There hold J < ∞⇒ Jr < ∞ andM+
B , ∅ ⇔ J < ∞. Hence,

Jr = ∞⇒ (∅ ,)M+ =M+
∞. (3.86)

In the special case of equation (3.84), that is r(t) = 1, the discussed classes will be
denoted as M+(1) and M+

∞(1). For basic properties (classification and existence)
of nonoscillatory solutions see e.g. [28, Section 4.1].

Theorem 3.12. If p−
1
α ∈ BSV, then ∅ ,M+(1) =M+

∞(1) ⊆ Γ

((
α−1

p

) 1
α

)
.

Proof. In the first part of the proof, we assume that p ∈ C1. From the assumption
of the theorem, in view of properties of BSV functions, we have (p−

1
α )′(t) =

−p′(t)/(αp
α+1
α (t)) → 0 as t → ∞. We know that M+(1) , ∅. Take y ∈ M+(1).

Then y ∈ M+
∞(1). Alternatively we can start with y(t) → ∞, and then we find

y ∈ M+(1) = M+
∞(1). If we set w =

fΦ(y′)
Φ(y) , where f is C1 nonzero function, then w

satisfies the generalized Riccati equation

w′ −
f ′(t)
f (t)

w − f (t)p(t) + (α − 1) f 1−β(t)|w|β = 0

for large t, see [28, Section 2.2.2]. Put f = p−
1
β . Then w > 0 and the Riccati like

equation becomes

w′

p
1
α (t)

= 1 − (α − 1)w

 p′(t)

αp
α+1
α (t)

+ wβ−1

 (3.87)

for large t. We want to prove that limt→∞w(t) = (α − 1)−
1
β . We distinguish three

cases according to the eventual sign of w′. First, let w′(t) > 0 for large t. Then
limt→∞w(t) = A ∈ (0,∞) ∪ {∞}. If A = ∞, then from (3.87) and p′(t)/(p

α+1
α (t)) → 0,

we have limt→∞w′(t)p−
1
α (t) = −∞, a contradiction with w′(t) > 0. Let A ∈ (0,∞).

Then from (3.87) and p′(t)/(p
α+1
α (t))→ 0, we have limt→∞w′(t)p−

1
α (t) = 1− (α−1)Aβ.

If A , (α − 1)−
1
β , then w′(t) ∼ (1 − (α − 1)Aβ)p

1
α (t) as t→∞, hence

m1

∫ t

t0

p
1
α (s) ds ≤ w(t) − w(t0) ≤M1

∫ t

t0

p
1
α (s) ds, (3.88)

t ≥ t0, t0 being large, for some 0 < m1 < M1 < ∞. From w = p−
1
β (y′/y)α−1, we have

wβ−1 = p−
1
α y′/y. Since wβ−1(t) ≤M, t ≥ t0, for some M ∈ (0,∞), we get p

1
α (t) ≥ y′(t)

y(t)M ,
t ≥ t0. Hence, ∫ t

t0

p
1
α (s) ds ≥

1
M

∫ t

t0

y′(s)
y(s)

ds =
1
M

ln
y(t)
y(t0)

,

t ≥ t0, which implies
∫ t

t0
p

1
α (s) ds → ∞ as t → ∞. In view of (3.88), we obtain

limt→∞w(t) = ∞, a contradiction with A < ∞. Thus, limt→∞w(t) = (α − 1)−
1
β . If
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w′(t) < 0 for large t, then we use similar arguments; in particular, we distinguish
the cases when limt→∞w(t) = 0 and limt→∞w(t) > 0, and reach a contradiction in
undesirable cases. Finally we assume w′(tn) = 0 for a sequence {tn} with tn → ∞

as n → ∞. We take here zeroes of w′ being consecutive; the finite cluster point
cannot exist. From (3.87), we have

wβ(tn) −
1

α − 1
= −

p′(tn)
α

p−
α+1
α (tn)w(tn). (3.89)

Hence, w(t) hits the positive real root of the equation

|λ|β −
1

α − 1
= −

p′(tn)
α

p−
α+1
α (tn)λ

at each t = tn. The positive root indeed exists; it is sufficient to realize that the
left hand side of the equation represents a parabola like curve symmetric w.r.t.
the vertical axis, and with the negative minimum, while the right hand side is a
line which goes through the origin. The function w is monotone between zeroes
of w′, thus w(tn) ≤ w(t) ≤ w(tn+1) or w(tn+1) ≤ w(t) ≤ w(tn), tn ≤ t ≤ tn+1. Thanks
to p′(t)/(p

α+1
α (t)) → 0 as t → ∞, from (3.89) we get limn→∞w(tn) = (α − 1)−

1
β , and

so limt→∞w(t) = (α − 1)−
1
β . Thus altogether we have limt→∞ p−

1
β (t)(y′(t)/y(t))α−1 =

(α − 1)−
1
β , which implies(

y(t)
y′(t)

)α
∼

(
α − 1
p(t)

) 1
β ·

α
α−1

=
α − 1
p(t)

as t→∞. (3.90)

Further, because of the identity (Φ(y′))′ = (α − 1)y′′|y′|α−2, from (2.1) we get

y′′y
y′2

=
y′′y(y′)α−2

y′α
=

(Φ(y′))′y
(α − 1)y′α

=
pΦ(y)y

(α − 1)y′α
=

p
α − 1

(
y
y′

)α
. (3.91)

From (3.90) and (3.91), we obtain

y′′(t)y(t)
y′2(t)

=
p(t)
α − 1

(
y(t)
y′(t)

)α
∼

p(t)
α − 1

·
α − 1
p(t)

= 1

as t → ∞. Hence, y ∈ Γ(h), where h = y/y′. From (3.90), h(t) ∼
(
α−1
p(t)

) 1
α as t → ∞,

thus y ∈ Γ

((
α−1

p

) 1
α

)
.

Now we drop the assumption of differentiability of p. Since p−
1
α ∈ BSV, there

exists p̂ ∈ C1 such that p̂(t) ∼ p(t) and (p̂−
1
α )′(t) → 0 as t → ∞. For every ε ∈ (0, 1)

there exists a (large) t0 such that (1 − ε)p̂(t) ≤ p(t) ≤ (1 + ε)p̂(t), t ≥ t0. Consider the
two auxiliary equations (Φ(u′))′ = (1 + ε)p̂(t)Φ(u) resp. (Φ(v′))′ = (1 − ε)p̂(t)Φ(v).
Take their solutions u resp. v which are in the relevant M+

∞(1) type classes, and
satisfy u(t0) = u0 > 0, u′(t0) = u1 > 0 resp. v(t0) = v0 > 0, v′(t0) = v1 > 0, with
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u0,u1, v0, v1 being determined more precisely later. Such solutions indeed exist by
(3.85) and (3.86). Set wu = Φ(u′/u), resp. wv = Φ(v′/v), resp. wy = Φ(y′/y). These
(eventually positive) functions then satisfy the generalized Riccati equations w′u =
(1+ε)p̂(t)−(α−1)|wu|

β, resp. w′v = (1−ε)p̂(t)−(α−1)|wv|
β, resp. w′y = p(t)−(α−1)|wy|

β,
t ≥ t0. Because of arbitrariness of v0, v1 (see (3.85)) we may take v in theM+

∞(1) type
class in such a way that wv(t0) ≤ wy(t0). From the standard result on differential
inequalities ([53, Chapter III, Section 4]), we have wv(t) ≤ wy(t), t ≥ t0. Hence,(

v′(t)
v(t)

)α−1

p−
1
β (t) ≤

(
y′(t)
y(t)

)α−1

p−
1
β (t),

t ≥ t0. As in the first part of the proof, we get(
v′(t)
v(t)

)α−1

p̂−
1
β (t) ∼

( 1 − ε
α − 1

) 1
β

,

which yields, in view of p(t) ∼ p̂(t),(
v′(t)
v(t)

)α−1

p−
1
β (t) ∼

( 1 − ε
α − 1

) 1
β

as t→∞. Thus we get

lim inf
t→∞

(
y′(t)
y(t)

)α−1

p−
1
β (t) ≥

( 1 − ε
α − 1

) 1
β

.

Analogously, examining wu, we get

lim sup
t→∞

(
y′(t)
y(t)

)α−1

p−
1
β (t) ≤

( 1 + ε
α − 1

) 1
β

.

Since ε ∈ (0, 1) was arbitrary, we obtain

lim
t→∞

(y′(t)/y(t))α−1p−
1
β (t) = (α − 1)−

1
β .

The rest of the proof is the same as in the previous part. �

Results in the spirit of Theorem 3.12 for linear equation are presented in Sub-
section 2.6.1 Recall that Γ ⊂ RPV(∞). Thus we should mention also Theorem 2.1,
where the condition

t
∫ λt

t
p(s) ds→∞

as t → ∞ is proved to be necessary and sufficient for decreasing and increasing
solutions of (2.2) to be rapidly varying; the proof is presented just for decreasing
solutions. Concerning an extension of this result to half-linear equation (3.84),
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the author has not found any paper on this topic, except of [121], where the dis-
crete counterpart is considered and only decreasing solutions are examined. As for
differential equations, there is only a mention made by prof. Kusano at CDDE con-
ference (Brno, 2000) about an allegedly existing statement which extends Marić’s
theorem for the case of decreasing solutions to (3.84), with emphasizing that the
case of increasing solutions of (3.84) is an open problem (both, the existence of an
RPV increasing solution as well as the fact that all increasing solutions are RPV).
Theorem 3.12, in fact, offers a condition guaranteeing that any eventually positive
increasing solution (which indeed exists) is rapidly varying and, moreover, its
asymptotic behavior is more specified. Observe that this sufficient condition, for
a differentiable p having the form (p−

1
α )′(t)→ 0 as t→∞, implies the one of Marić

type modified for (3.84), namely

tα−1
∫ λt

t
p(s) ds→∞.

Theorem 3.12 can be seen also as an extension of the classical result by Hartman-
Wintner [54, Paragraph 24]. Finally, consider the special case when p(t) → C ∈
(0,∞) as t→∞. Then, from the proof of Theorem 3.12 we see that y ∈M+ satisfies
limt→∞ y′(t)/y(t) = ((α − 1)/C)−

1
α . Thus, from this point of view, the solution y can

be understood as of Poincaré-Perron type. Such a behavior, along with numerous
refinements, is studied quite extensively for linear equations or systems also in
the present; as one of the pioneering works can be regarded the classical paper
[140]. So as a by-product of our results, we offer — to some extent — a half-linear
extension of this result in the second order case.

Now we somehow modify the above ideas which will lead to regularly varying
behavior. Let p be differentiable. In the previous considerations we assumed that
limt→∞(p−

1
α )′(t) = 0. Now assume that the limit is nonzero, i.e., limt→∞ p′(t)/p−

α+1
α =

C , 0. Denote by %̂ the positive root of

|%|β +
C
α
% −

1
α − 1

= 0.

It is easy to see that the root indeed exists and %̂ , (α − 1)−
1
β . Take y ∈ M+(1).

Similar arguments as in the first part of the proof of Theorem 3.12 yield(
y′(t)
y(t)

)α−1

p−
1
β (t) ∼ %̂

as t→∞. Using this relation along with (3.91), we get

lim
t→∞

y′′(t)y(t)
y′2(t)

=
1

(α − 1)%̂β
, 1.

We (naturally) assume that C < 0. Then %̂ > (α − 1)−β, and so

lim
t→∞

y′′(t)y(t)
y′2(t)

= σ < 1,
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where σ = 1/((α − 1)%̂β). Hence, y ∈ RV(1/(1 − σ)), or y ∈ RV(−α%̂β−1/C). Thanks
to convexity of solutions to (2.1), we get normalized regular variation. Thus we
have proved the following theorem.

Theorem 3.13. Let p be differentiable and limt→∞ p′(t)/p−
α+1
α (t) = C < 0. Then

∅ ,M+(1) =M+
∞(1) ⊆ NRV(−α%̂β−1/C),

where %̂ is the positive root of

|%|β +
C
α
% −

1
α − 1

= 0.

From the results of Section 3.2 it follows that (3.84) possesses solutions yi with
yi ∈ RV(Φ−1(λi)), i = 1, 2, where λ1 < 0 < λ2 are the roots of |λ|β − λ − A = 0
if and only if limt→∞ tα−1

∫
∞

t p(s) ds = A(< 0). Observe that p′(t)p−
α+1
α (t) ∼ C(< 0)

implies tα−1
∫
∞

t p(s) ds ∼ (−α/C)α/(α − 1) as t → ∞. Further, it is easy to see that
λ2 = (−α/C)α−1%̂, and so — as expected — the indices of regular variation of
increasing solutions in both the results coincide. Note that the integral condition
from Section 3.2 is more general than the condition in the previous theorem. On the
other hand, the fixed point approach used in Section 3.2 guarantees the existence
of at least one positive increasing RV solution, while the result in this section says
that all positive increasing solutions are regularly varying.

Now we show a connection with generalized regular variation. First observe,
that if a positive function f ∈ C1 satisfies τ(t) f ′(t)/ f (t) ∼ ϑ ∈ R as t → ∞,
where τ is positive continuous with

∫
∞

a (1/τ(s)) ds = ∞, then f ∈ NRVω(ϑ),

where ω(t) = exp
{∫ t

a 1/τ(s) ds
}
. This fact easily follows from the representation

theorem. Assume now p−
1
α ∈ BSV, and take y ∈ M+(1). From the proof of

Theorem 3.12, we have y′(t)/y(t) ∼ (p(t)/(α − 1))
1
α as t → ∞. Set τ(t) = p−

1
α (t).

Then ln y(t) ∼ N
∫ t

t0
(1/τ(s)) ds as t → ∞, for some N ∈ (0,∞), which implies∫

∞

t0
(1/τ(s)) ds = ∞. If we set ϑ = (α − 1)−

1
α , then y satisfies τ(t)y′(t)/y(t) ∼ ϑ as

t→∞ and now it is easy to see that

y ∈ NRVω

(
(α − 1)−

1
α

)
, where ω(t) = exp

{∫ t

a
p

1
α (s) ds

}
.

The statement of Theorem 3.12 can therefore be reformulated in terms of general-
ized RV functions. In particular, we get

M+(1) ⊆ NRVω

(
(α − 1)−

1
α

)
with the above defined ω.

Consider now more general equation (3.83), where the coefficient r satisfies∫
∞

a r1−β(s) ds = ∞. Set R(t) =
∫ t

a r1−β(s) ds and denote by R−1 its inversion. Let us
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introduce new independent variable s = ξ(t) and new function u(s) = y(ξ−1(s)) =
y(t), where ξ ∈ C1, ξ(t) > 0, ξ′(t) > 0, t ∈ [a,∞), and ξ(t) → ∞ as t → ∞. Then
d
dt = ξ′(ξ−1(s)) d

ds , and (3.83) is transformed into

d
ds

(
r(ξ−1(s))Φ(ξ′(ξ−1(s)))Φ

(du
ds

))
=

p(ξ−1(s))
ξ′(ξ−1(s))

Φ(u). (3.92)

Set ξ(t) = R(t). Then ξ′(ξ−1(s)) = r1−β(R−1(s)) and (3.92) becomes

d
ds

(
Φ

(du
ds

))
= p̃(s)Φ(u), (3.93)

where p̃(s) =
p(R−1(s))

r1−β(R−1(s)) . Take a solution y of (3.83) such that y ∈M+. Then y ∈M+
∞,

and — after the transformation — the corresponding solution u of (3.93) satisfies
u(s) → ∞ as s → ∞ with d

ds u(s) > 0 eventually. If we now assume p̃−
1
α ∈ BSV,

then as in the proof of Theorem 4.14 we get

d
ds u(s)
u(s)

∼

(
p̃(s)
α − 1

) 1
α

as s→∞. Since d
ds = rβ−1(t) d

dt , the last asymptotic relation yields

rβ−1(t)y′(t)
y(t)

∼

(
rβ−1(t)p(t)
α − 1

) 1
α

as t → ∞, which yields y′(t)/y(t) ∼ 1/Q(t) as t → ∞, where Q(t) = [p(t)/((α −
1)r(t))]−

1
α . Take ε > 0 and t0 such that

1 − ε
Q(t)

≤
y′(t)
y(t)

≤
1 + ε
Q(t)

,

t ≥ t0. Assume Q ∈ BSV. Then Q ∈ SN , because of continuity. Let λ > 0 and take
the integral between t and t + λQ(t), for which by the local uniform convergence
the following relation holds,∫ t+λQ(t)

t

1
Q(v)

dv =

∫ λ

0

Q(t)
Q(t + zQ(t))

dz→ λ

as t→∞. Thus we get

(1 − ε)λ ≤ lim inf
t→∞

ln
y(t + λQ(t))

y(t)
≤ lim sup

t→∞
ln

y(t + λQ(t))
y(t)

≤ (1 + ε)λ.

Letting ε → 0 we come to y ∈ Γ(Q). The above considerations are made under
the assumptions p̃ ∈ BSV and Q ∈ BSV. If we assume p, r differentiable, then —
after some rearrangement in the former equality — we get

d
ds

p̃−
1
α (s) =

− 1
α

(
r
p

) α+1
α p′r − pr′

r2 + (1 − β)
(

r
p

) 1
α r′

r

 ◦ R−1(s)
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and

(α − 1)−
1
αQ′(t) =

− 1
α

(
r
p

) α+1
α p′r − pr′

r2

 (t).

Thus we see that in the case of differentiable coefficients it is sufficient to require
the expressions on the right-hand sides to tend to zero as s resp. t tends to infinity.
So we have obtained the following result, which extends Theorem 3.12.

Theorem 3.14. Let
∫
∞

a r1−β(s) ds = ∞. Denote R(t) =
∫ t

a r1−β(s) ds. Then any of the two
sets of conditions

(i)
( p

r1−β

)− 1
α
◦ R−1

∈ BSV,
(p

r

)− 1
α
∈ BSV,

or

(ii) p, r are differentiable,
(( p

r

)− 1
α

)′
(t)→ 0 and

(( p
r

)− 1
α r′

r

)
(t)→ 0 as t→∞

guarantees

∅ ,M+ =M+
∞ ⊆ Γ

( (α − 1)r
p

) 1
α
 .

A closer examination of the above observations reveals that the part of the
proof of Theorem 3.12 starting with (3.90) can alternatively be shown via a different
method, namely the one which was used to obtain Theorem 3.14.

The asymptotic conditions in the second part of Theorem 3.14 can be relaxed

to
((p

r

)− 1
α

)′
(t)→ 0 and

(( p
r1−β

)− 1
α

)′
(t) · rβ−1(t)→ 0 as t→∞.

The results of this subsection were further extended in [150] by Řehák and
Taddei. Equation (3.83) is examined there directly (i.e., not via a transformation)
no matter which of the conditions

∫
∞

r1−β(s) ds = ∞ and
∫
∞

r1−β(s) ds < ∞ hap-
pens. Moreover, not only increasing solutions but also decreasing solutions are
considered.

3.6.2 Solutions in the class Π

In the paper [150] by Řehák and Taddei, half-linear extensions of the Geluk type
results (see e.g. Theorem 2.11) were obtained. The paper is in preparation. We
give — for illustration — only one statement without proof. ByM− we mean the
set of all eventually positive solutions of (3.83).

Theorem 3.15. Let p ∈ RV(δ) and r ∈ RV(δ + α) with δ < −1. If Lp(t)/Lr(t) → 0 as
t→ ∞, where Lp and Lr are SV components of p and r, respectively, thenM− ⊂ NSV.
If y ∈M−, then −y ∈ Π(−ty′(t)). Moreover,
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(i) If
∫
∞

a

( sp(s)
r(s)

) 1
α−1 ds = ∞, then

y(t) = exp

−
∫ t

a

(
sp(s)

−(δ + 1)r(s)

) 1
α−1

(1 + o(1)) ds


and y(t)→ 0 as t→∞.

(ii) If
∫
∞

a

( sp(s)
r(s)

) 1
α−1 ds < ∞, then

y(t) = y(∞) exp


∫
∞

t

(
sp(s)

−(δ + 1)r(s)

) 1
α−1

(1 + o(1)) ds


and y(t)→ y(∞) ∈ (0,∞) as t→∞.

Note that if we want to deal with SV solutions in the complementary case
δ > −1, we must look for them in the classM+ (positive increasing solutions).

3.7 Half-linear differential equations having regularly
varying solutions

Kusano and Marić in [94] deals with the question whether for any distinct real
constants ϑ1 and ϑ2 there exists a differential equation of the form (3.1) which
possesses a pair of solutions yi ∈ RV(ϑi), i = 1, 2. The function ω which appears
in the theorem is assumed to satisfy conditions from the definition of regularly
varying functions with respect to ω, see Definition 1.10.

For any |ϑ1| , |ϑ2| define

M(ϑ1, ϑ2) =
|ϑ1|

β
− |ϑ2|

β

ϑ1 − ϑ2
, N(ϑ1, ϑ2) =

ϑ2|ϑ1|
β
− ϑ1|ϑ2|

β

ϑ1 − ϑ2

and observe that
M(ϑ1, ϑ2) ≶ 0⇔ ϑ1 + ϑ2 ≶ 0.

Theorem 3.16. Let ϑ1 and ϑ2 be any given real constants such that |ϑ1| , |ϑ2|.
(i) Suppose that r satisfies

r1−β(t) ∼ KωM(ϑ1,ϑ2)−1(t)ω′(t) (3.94)

as t→∞ for some positive constant K. Let M(ϑ1, ϑ2) > 0 and p be conditionally integrable
on [a,∞). Then equation (3.1) possesses a pair of solutions yi ∈ NRVω(Φ−1(ϑi)), i = 1, 2,
if and only if

lim
t→∞

Kα−1ω(α−1)M(ϑ1,ϑ2)(t)
∫
∞

t
p(s) ds =

N(ϑ1, ϑ2)
M(ϑ1, ϑ2)

. (3.95)

(ii) Suppose that r satisfies

r1−β(t) = KωM(ϑ1,ϑ2)−1(t)ω′(t)
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for some positive constant K. Let M(ϑ1, ϑ2) < 0 and ωαM(ϑ1, ϑ2)p be conditionally inte-
grable on [a,∞). Then equation (3.1) possesses a pair of solutions yi ∈ NRVω(Φ−1(ϑi)),
i = 1, 2, if and only if

lim
t→∞

Kα−1ω|M(ϑ1,ϑ2)|(t)
∫
∞

t
ωαM(ϑ1,ϑ2)p(s) ds =

(α − 1)N(ϑ1, ϑ2)
|M(ϑ1, ϑ2)|

.

Proof. (i) Suppose M(ϑ1, ϑ2) > 0. For arbitrary real numbers ϑ1, ϑ2 choose A in
equation (3.13) as

A =
N(ϑ1, ϑ2)

Mα(ϑ1, ϑ2)
.

Then, its only two real roots are

λi =
ϑi

Mα−1(ϑ1, ϑ2)
,

i = 1, 2. Further, choose function r in equation (3.1) such that for some constant
K > 0,

r1−β(t) ∼ KωM(ϑ1,ϑ2)−1(t)ω′(t)

as t → ∞. Whence due to Rα(t) =
∫ t

0 r1−β(s) ds and (3.94), condition (3.56) be-
comes (3.95) and an application of Theorem 3.6 asserts that equation (3.1) has two
solutions

yi ∈ NRVRα

(
Φ−1(ϑi)

M(ϑ1, ϑ2)

)
,

i = 1, 2. By applying the basic properties of generalized RV functions,

RVRα

(
Φ−1(ϑi)

M(ϑ1, ϑ2)

)
= RVωM(ϑ1,ϑ2)

(
Φ−1(ϑi)

M(ϑ1, ϑ2)

)
= RVω(Φ−1(ϑi)),

i = 1, 2, whence we conclude that the solutions yi, i = 1, 2 of (3.1) belong to
NRVω(Φ−1(ϑi)), i = 1, 2, as desired.

(ii) The proof of this part is similar to that of (i); this time we utilize Theorem 3.8.
�



Chapter 4
Emden-Fowler type equations and
systems

4.1 Introductory and historical remarks

One of typical examples of the objects studied in this chapter is the second order
Emden-Fowler type (or the generalized Emden-Fowler or the quasilinear) equation

(r(t)Φα(y′))′ + p(t)Φγ(y) = 0, (4.1)

Φλ(u) := |u|λ, where α, γ ∈ (0,∞) and r > 0, p are continuous on [a,∞). If α = γ,
then (4.1) reduces to the half-linear equation of the form (3.2). Note that the power
in Φλ is shifted by one in comparison with the power in Φ which was used in
the previous chapter. But since here we start with zero, while formerly it was
with one, the both nonlinearities are practically the same. We decided for these
conventions because they are very usual in the literature when studying half-linear
and quasi-linear differential equations.

First we give few historical remarks. In the study of stellar structure, the
Lane-Emden equation

y′′(t) +
2
t

y′(t) + yγ(t) = 0 (4.2)

was considered. This equation was proposed by Lane [102] and studied in detail
by Emden [31]. Fowler [41, 42] considered a generalization of this equation, called
Emden-Fowler equation

ty′′ + Cy′(t) + Dtσyγ = 0.

Note that (4.2) has the self-adjoint form (t2y′)′ + t2yγ = 0. By the change of

variable t = 1/ξ, (4.2) becomes d2 y
dξ2 +

yγ

ξ4 = 0, and by the change of variable y = η/t,
d2η
dt2 +

ηγ

tγ−1 = 0. The work of Emden also got the attention of physicists outside
the field of astrophysics. For instance, the works of Thomas [164] and Fermi

109
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[40] resulted in the Thomas-Fermi equation, used in atomic theory (see below for
more details). The terminology is somehow confusing. Occasionally (4.2) is also
called the Lienard-Emden equation and equation (4.4) mentioned below is called
the Emden-Fowler equation (no matter what the sign is). Equation (4.4) with “+”
is sometimes called the Fowler equation. All these equations are still extensively
being investigated by physicists and mathematicians, and lot of other applications
is known. Some people in the current literature (which is related to our topic) call
the equation

(r(t)Φα(y′))′ + δp(t)Φγ(y) = 0, (4.3)

where p(t) > 0 and δ ∈ {±1}, as of the Emden-Fowler type when δ = 1 and as of the
Thomas-Fermi type when δ = −1. The same terminology is used for corresponding
higher order equations or systems.

As already indicated, equation (4.1) can be understood also as a natural gener-
alization of half-linear equation (3.1).

If, in (4.3), α = 1 and 0 < γ < 1, then we speak about sub-linear equation (at
infinity), while if α = 1 and γ > 1, then we speak about super-linear equation. For
general α, γ ∈ (0,∞) we call (4.3) sub-half-linear or sub-homogeneous provided α > γ,
while we call it super-half-linear or super-homogeneous when α < γ. Analogously
we use this terminology for related higher order equations and systems, and also
for the objects where nonlinearities are somehow close to power functions.

As one of the motivations for considerations in this chapter can be the Thomas-
Fermi atomic model described by the following nonlinear singular boundary value
problem

y′′ =
1
√

t
y3/2,

y(0) = 1, y(∞) = 0,

see Thomas [164], Fermi [40]; it is in fact a dimensionless form of the radially
symmetric Poisson equation. As already mentioned, more general equation of
physical interest is the Emden-Fowler one

d
ds

(
s%

du
ds

)
± sσuγ = 0, (4.4)

where %, σ, γ ∈ R. For % , 1, it is reducible to the form y′′ ± tτyγ = 0, where τ
depends on %, σ, γ, and for % = 1, to the form y′′ ± e(σ+1)tyγ = 0, see Bellman [12,
Chapter 7]. It is perhaps worthwhile mentioning Fowler’s statement that even for
p(t) ∼ tσ as t→∞ (instead of p(t) = tσ) his method is not applicable.

Before we come to connections with regular variation, note for instance that
Kamo and Usami in [70, 71] consider the equation

(Φα(y′))′ = p(t)Φγ(y), (4.5)

where α, γ > 0 and p(t) ∼ tσ as t → ∞. Under (natural) additional conditions on
α, γ, σ, they show that solutions y of (4.5) in a certain basic asymptotic class have
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the form y(t) ∼ Ktδ, where K = K(α, γ, σ), δ = δ(α, γ, σ). The key role is played
by the asymptotic equivalence theorem which says, roughly speaking: If the
coefficients of two equations of the form (4.5) are asymptotically equivalent, then
their solutions which are “of the same type” are also asymptotically equivalent.
Of course, it is the equation with tσ as the coefficient which is used for comparison
purposes.

Realizing now that RV functions can be understood as a (nontrivial) exten-
sion of functions asymptotically equivalent to power ones, we can ask natural
questions: How about an extension in the sense that the coefficient in the Emden-
Fowler equation is a regularly varying function? Or, how about an extension in the
sense of replacing the nonlinearity in the Emden-Fowler equation by a regularly
varying function? All these and also further related problems are discussed in this
chapter. Note for example, that such results as the above asymptotic equivalence
theorem cannot be used in a general case. We will describe various approaches,
which are used either in the same settings or in different settings.

4.2 Former results

Before we present a survey of recent results, let us recall some classical works
made in particular by Avakumović, Geluk, Marić, and Tomić.

4.2.1 Superlinear second order equations in the work by Avakumović
and related results

A substantial generalization of considerations about equation (4.4) was made by
Avakumović in 1947, [9]. In fact, it is the first paper connecting regular variation
and differential equations. It deals with the special type of (4.1), namely

y′′ = p(t)yγ, (4.6)

where p ∈ RV(σ) is a continuous function and γ > 1. He proved the following
statement.

Theorem 4.1 (Avakumović [9]). Let p ∈ RV(σ) with σ > −2 and γ > 1. If y is an
eventually positive solution of (4.6) such that limt→∞ y(t) = 0, then

y(t) ∼
(

(1 + γ + σ)(σ + 2)
(γ − 1)2

) 1
γ−1 (

t2p(t)
)− 1

λ−1 .

The proof is rather involved and proceeds by considering a suitable function
h(t), satisfying the relations tσ+γLp(t)hγ−1(t) ∼ (1 +γ+σ)(2 +σ) (with Lp(t) = p(t)/tσ)
and h′′(t) ∼ p(t)hγ(t), and applying a “variation of constants” y(t) = h(t)z(ϕ(t)),
where ϕ is a solution of hϕ′′ + 2h′ϕ′ + δhϕ′2 = 0, δ > 0. The resulting differential
equation for z is of the form zϕϕ − δzϕ = f (t)z(g(t)zγ−1

− 1), where f (t) ≥ ζ > 0 and
g(t) ∼ 1. Tauberian considerations show that z(ϕ(t)) ∼ 1.
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A refinement of the last asymptotic formula is made in Avakumović [10] along
with applications which lead to refined asymptotic formulae for o(1) solutions of
(4.6).

Only in 1991, Geluk in [46] presented a simple and elegant proof using a result
on smoothly varying functions (see (1.11)) proved by Balkema, de Haan, and
Geluk.

Geluk proved, in fact, the following statement.

Theorem 4.2. Let p ∈ RV(σ) with σ > −2 and γ > 1. If y is an eventually positive and
bounded solution of (4.6), then y ∈ RV(−(σ + 2)/(γ − 1)).

Proof. Substitutions u = y1−γ and v(t) = ln u(et) show that v satisfies the equation

v′′ − v′ − βv′2 = −eψ−v,

where ψ = ln[(γ − 1)e2tp(et)], β = 1/(γ − 1). By the observations at (1.11), applied
to the function (γ− 1)t2p(t), there exists a function ψ1(t) such that ψ(t)−ψ1(t)→ 0,
ψ′1(t) → σ + 2, ψ′′1 (t) → 0 as t → ∞, and ψ1(t) ≤ ψ(t) for t sufficiently large. By
substituting v(t) = ψ1(t) + h(t), the previous equation is reduced to

h′′ − ωh′ − βh′2 = −(1 + o(1))e−h + (σ + 2)(1 + βσ + 2β) + o(1)

with ω(t) → 2β(σ + 2) + 1 as t → ∞. We claim that h(t) tends to a finite limit as
t→∞. The following three cases are possible.

(i) h′(t) > 0 for t > t0. Then h is ultimately increasing and its limit exists.
If h(t) → ∞, then by the preceding asymptotic equation, for t ≥ t0, one has
h′′ > ωh′ + βh′2 > h′/2. This implies h′(t) → ∞, and so, due to the mentioned
equation, (−1/h′(t))′ → β as t → ∞. Hence, integrating, −1/h′(t) ∼ βt, which
contradicts the assumption h′(t) > 0 for large t.

(ii) h′(t) < 0 for t > t0. Then h is ultimately decreasing and its limit exists.
The case when h(t) → −∞ as t → ∞ is again disposed of. Because of ψ1 ≤ ψ, the
equation for v gives

−v′′ + v′ + βv′2 = eψ−v
≥ eψ1−v = e−h.

Since −h(t) → ∞ as t → ∞, there exists a sequence {tn} such that v′(tn) → ±∞ as
n → ∞. If v′(tn) → ∞, then h′(tn) → ∞, a contradiction. The case v′(tn) → −∞
implies u′(exp tn) < 0, hence y′(exp tn) > 0 for n sufficiently large. Since y′′(t) > 0,
this contradicts the boundedness of y.

(iii) h′(t) oscillates. This implies the existence of a sequence {tn} such that
h′(tn) = 0 and tn →∞ as n→∞. If h′′(tn) < 0 (i.e., h(t) attains its maximum for tn),
then for large n one has h(tn) < − ln[(σ+ 2)(1 + βσ+ 2β)]. Similarly if h′′(tn) > 0, we
find h(tn) > − ln[(σ + 2)(1 + βσ + 2β)], a contradiction.

Thus h(t) tends to a finite constant as t→ ∞ which then implies t2p(t) ∼ ky1−γ

as t→∞. Hence, y is regularly varying of index −(σ + 2)/(γ − 1). �
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Remark 4.1. The conclusion y ∈ RV(−(σ + 2)/(γ − 1)) implies that y(t) → 0.
Moreover, y′′ is regularly varying as the product of twoRV functions. Application
of Karamata’s theorem then gives the exact value of the constant k, and thus we
obtain the asymptotic formula from Theorem 4.1.

4.2.2 Superlinear second order equations in the former works
by Marić and Tomić

In this subsection we present results based on Marić [105] and Marić, Tomić [110,
111, 112].

We continue in considerations from the previous subsection. Neither Avaku-
mović nor Geluk consider the border case σ = −2 when the solutions tending to
zero may still exists (see e.g. Wong [168], Taliaferro [158]). Consider the equation

y′′ = p(t)F(y), (4.7)

where p(t) and F(y) are continuous and positive for t > 0 and y > 0. Wong’s result
reads as follows. Let F(t)/t increase. Then (4.7) has a positive solution which tends
to zero if and only if ∫

∞

sp(s) ds = ∞.

The above monotonicity condition is changed to

lim sup
u→0

sup
0<λ<d

F(λu)
λF(u)

< 1

for some d > 0, by Taliaferro, not affecting the statement of the theorem.
Marić and Tomić (see [105, 110, 111, 112]) in their consideration neither the

monotonicity nor the Taliaferro condition need always to hold, in which case the
condition

∫
∞

sp(s) ds = ∞ is assumed to hold independently (and the existence of
relevant solution as well). First we present the result concerning the estimates of
solutions.

Theorem 4.3. Let p ∈ RB and such that∫
∞

sp(s) ds = ∞. (4.8)

Assume that F ∈ RB0 and such that

u−γF(u) almost decreases for some γ > 1 (4.9)

as u→ 0. Then for every eventually positive solution y of (4.7) tending to zero there holds

F(y(t))
y(t)

�
1∫ t

a sp(s)ds
(4.10)

as t→∞. Moreover, F(u(t))/u(t) ∈ RB.
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Proof. Since the functions p and F are regularly bounded, in addition to hypotheses
(4.8) and (4.9), due to a relation of RBwith almost monotonicity, there hold

tδp(t) almost increases for some δ, (4.11)

tωp(t) almost decreases for some ω < δ (4.12)

for large t. Inequalities which yield (4.10) are then the results of a series of various
estimates. This part of the proof is rather technical; for details see [105]. �

Notice that in view of the properties of RV functions, if p ∈ RV(−2), then the
integral I(t) =

∫ t
a sp(s) ds is a new SV function which cannot be disposed of in

general by estimating it in a unique way. If e.g. p(t) = t−2 ln t, then I(t) ∼ 1
2 ln2 t as

t → ∞, whereas if f (t) = 1/(t2 ln t), then I(t) ∼ ln ln t as t → ∞. However this is
possible by restricting the rate of decay of function p. More precisely, the following
statement holds.

Corollary 4.1. Let p ∈ RB and such that for large t

tδp(t) almost increases for some δ < 2.

Assume that F ∈ RB0 and such that

u−γF(u) almost decreases for some γ > 1

as u→ 0. Then for every eventually positive solution y of (4.7) tending to zero there holds

F(y(t))
y(t)

�
1

t2p(t)

as t→∞.

Proof. Since δ < 2, condition (4.8) is fulfilled and the previous theorem applies.
Furthermore, due to (4.11),∫ t

a
sp(s) ds ≤Mtδp(t)

∫ t

a
s1−δds ≤ t2p(t),

which gives the left-hand side of the required inequality. The right-hand one is
obtained likewise by using (4.11) instead of (4.11). �

Next we describe the asymptotic behavior of solutions to (4.7), where we
assume that instead of being regularly bounded, the functions p and F are in
RV and RV0, respectively. Then instead of estimates for large t we obtain a
precise asymptotic behavior of the function F(y(t))/y(t) as t → ∞. We also tacitly
assume that Wong’s condition (4.8) holds in order not to violate the existence of
the considered solutions y tending to zero even in the simplest cases e.g. such as
y′′ = t2Lp(t)yγ.
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Theorem 4.4. Assume

p(t) = tσLp(t), σ ≥ −2, F(u) = uγLF(u), γ > 1,

where Lp ∈ SV and LF ∈ SV0. Then for every solution y(t) of (4.7) tending to zero as
t→∞ there holds for t→∞:

(i) for σ > −2

yγ−1(t)LF(y(t)) ∼
(1 + σ + γ)(2 + σ)

(γ − 1)2 ·
1

t2+σLp(t)

and y ∈ RV((σ + 2)/(1 − γ));
(ii) for σ = −2

yγ−1(t)LF(y(t)) ∼
1

(γ − 1)
∫ t

a Lp(s)/s ds

and y ∈ SV.

Proof. The proof is rather technically complicated. We briefly mention only the
main ideas. The details can be found in [105, 112]. Put

I(t) :=
∫ t

a

1
s2

∫ s

a
u2p(u) du ds,

G(y) :=
∫ y

0

1
t

∫ t

0

F(u)
u2 du dt,

Z(t) := I(t)G(y(t)).

The function Z satisfies the differential equation

Z′′

Z
·

I
I′

= 2
Z′

Z
+

I′′

I′
−

2I′

I
+ Z

p
I′
·

FG′

G2 +
(Z′

Z
−

I′

I

)2 I
I′
·

GG′′

G′2
.

The behavior of all intervening functions (coefficients) is then determined. Among
others, it is shown that

G(y) ∼
F(y)

(γ − 1)2y
as y→ 0,

I(t) ∼ t2p(t)/((σ + 3)(σ + 2))

as t→∞, and
lim
t→∞

Z(t) = c > 0.

In addition to various estimates and properties of RV functions, also the Avaku-
mović theorem (Theorem 4.1) and estimates (4.10) find application in proving the
above estimations. The asymptotic formula in the part (i) is then the result of these
relations and some additional observations; among others we apply the following
claim: Since H(y) = yγ−1LF(y) is in RV0(γ − 1), we find H̃ ∈ RV0(1/(γ − 1)) such
that H̃(H(y)) ∼ y. Concerning the part (ii), in contrast to the part (i), first it is
proved that y ∈ SV and then the asymptotic formula is derived (using analogous
arguments to those in the part (i)). �
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Remark 4.2. The natural question of how to obtain asymptotic behavior of solu-
tions y by inverting formulae in Theorem 4.4 turns out to be in general a very
difficult one (but not related to differential equations). In fact, that theorem gives
only that solutions are of the form

y(t) =

t(σ+2)/(1−γ)L1(t) for σ > −2
L2(t) for σ = −2

where SV functions L1,L2 satisfy the following implicit asymptotic relations

Lγ−1
1 (t)LF

(
t(σ+2)/(1−γ)L1(t)

)
∼

(1 + σ + γ)(2 + σ)
(γ − 1)2 ·

1
Lp(t)

,

Lγ−1
2 (t)LF(L2(t)) ∼

1

(γ − 1)
∫ t

a Lp(s)/s ds

as t→∞.

4.2.3 Rapidly varying coefficient and nonlinearity

In the previous subsection it is assumed for the functions p and F in (4.7) to be RV
and RV0, respectively. Therefore that analysis did not include even such simple
cases as p(t) = et or F(u) = e−1/u. These examples indicate that we intend to keep
as the main feature of equation (4.7) — to be superlinear and such that F(u) → 0
as u → 0. This type of problem was considered in Marić [105], see also Marić,
Radaśin [106, 107, 108].

Let us write equation (4.7) as

y′′ = f (g(t))ϕ(ψ(t)). (4.13)

We assume that g(t) is positive, increasing to infinity as t→∞, twice differentiable,
and such that there exists the limit

lim
t→∞

g(t)g′′(t)
g′2(t)

= A.

For ψ(u) we assume that it is positive, decreasing to zero as u→ 0, twice differen-
tiable, and such that there exists the limit

lim
u→0

ψ(u)ψ′′(u)
ψ′2(u)

= B.

Recall that then A,B ≤ 1; if A < 1, then g ∈ RV(1/(1−A)); if A = 1, then g ∈ RPV;
if B < 1, then ψ ∈ RV0(1/(1 − B)); if B = 1, then ψ ∈ RPV0.
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Theorem 4.5. Let f ∈ RV(σ) with σ + 2 − 2A ≥ 0 for A , 1 and σ > 0 for A = 1, and
ϕ ∈ RV0(γ) with γ > 1 − B.. Assume that A and B are not both equal to one. Then for
all positive solutions y(t) of (4.13) which tend to zero as t→∞, there holds

ψ′(y(t))
ψ(y(t))

ϕ[ψ(y(t))] ∼
(1 − A)(γ + B − 1) + (1 − B)(σ + 2 − 2A)

(γ + B − 1)2
∫ t

a
g(s)
g′(s) f (g(s)) ds

as t→∞.

Proof. Basically, the proof runs along the same line as the proof of Theorem 4.4,
except that here we do not have estimates as (4.10), which requires some additional
arguments. We put

I(t) :=
∫ t

a

(
g′(s)
g(s)

)2 ∫ s

a

(
g(u)
g′(u)

)2

f (g(u)) du ds,

G(y) :=
∫ y

0

ψ′(s)
ψ(s)

∫ s

0

(
ψ(u)
ψ′(u)

)2

ϕ(ψ(u)) du ds,

Z(t) := I(t)G(y(t)).

The function Z satisfies the differential equation

Z′′

Z
·

I
I′

= 2
Z′

Z
+

I′′

I′
−

2I′

I
·

FG′

G2 +
(Z′

Z
−

I′

I

)2 I
I′
·

GG′′

G′2
.

For details see [105]. �

Remark 4.3. Somehow related results were obtained by Taliaferro (see [158, 160]
and also [105, Section 3.6]) for the more general equation y′′ = F(t, y, y′). He
uses some definitions which are — as stated there — “partially motivated” by RV
functions, but his methods make no use of Karamata functions which is the subject
of this treatise.

4.3 Selection of recent results

4.3.1 Introductory remarks

In the last decade, many papers have appeared (and still are appearing) which
are devoted to the investigation of various forms of Emden-Fowler type equations
(incl. systems and higher order equations) in the framework of regular variation.
It is impossible to present here all these results. Instead of this we prefer to make a
reasonable selection of typical results which will show a wide variety of methods
which are employed — this is in accordance with the principal aim of our treatise.

It is worthy of note that there are some overlaps in the papers in spite of
different methods. However, this fact is quite natural, when one realizes that a
typical result is of the form: It the coefficients in an equation are RV, then (at
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least on or all) solutions in certain basic asymptotic classes are RV (with the index
which depends on the indices of coefficients and powers of nonlinearities) and
their behavior is governed by a specific asymptotic formula.

Before we present selected results, let us try to give at least a brief (but com-
prehensive) survey of the literature devoted to this topic, that is investigation of
quasilinear equations in the framework of regular variation.

First note that when we studyRV (or somehow similar) solutions we consider
nonoscillatory solutions. There is an extensive literature devoted to classifications
of nonoscillatory solutions and investigation of the existence and behavior of
solutions in the individual classes. One of the most important publications along
this line is the book [79] by Kiguradze and Chanturia. Instead of quoting other
works, note that some related references are spread in this text, in the places where
we utilize the relevant results.

There are various approaches to examine Emden-Fowler type equations in the
framework of regular variation and several independent groups which work on
it.

Existence and asymptotic behavior ofRV(1) increasing solutions of the second
order Thomas-Fermi type equation

y′′ = p(t)F(x),

p(t) > 0, in the sub-linear case were studied by Kusano, Manojlović, Marić in [83];
other RV solutions of the same problem are examined in [104] by Manojlović and
Marić. The generalized Thomas-Fermi equation

(Φα(y′))′ = p(t)Φγ(y),

p(t) > 0, is considered in the sub-homogeneous case (α > γ) by Kusano, Marić,
Tanigawa in [100]; existence conditions and formulas forSV,RV(1) solutions and
for nearly RV solutions are established. An asymptotic analysis of RV solutions
to the Emden-Fowler type equation

y′′ + p(t)Φγ(y) = 0,

p(t) > 0, is made in the sub-linear case in [84] and existence ofSV,RV(1) solutions
is discussed for the same equation in both the sub- and super-linear cases in [85]
by Kusano and Manojlović. The same authors study the sublinear Emden-Fowler
type equation

y′′ + p(t)F(x) = 0,

p(t) > 0, in [86]; existence and asymptotic behavior of SV,RV(1) solutions are
examined, and necessary conditions for the existence along with asymptotic for-
mulas for intermediate solutions are established. A generalized Emden-Fowler
type equation of the form

(r(t)Φα(y′))′ + p(t)Φγ(y) = 0,



Chapter 4 119

r(t), p(t) > 0, α > γ, is considered in [91] by Kusano, Manojlović, and Milošević
and in [64] by Jaroš, Kusano and Manojlović; its intermediate generalized RV
solutions are discussed. The fourth order sublinear equation

y(4) + δp(t)Φγ(y) = 0,

p(t) > 0, 0 < γ < 1, is considered by Kusano and Manojlović in [87] under the
condition δ = 1 and in [88] under the condition δ = −1; existence of (all possible)
RV solutions and their accurate behavior are examined. This equation with δ = 1
is examined also by Kusano, Manojlović, and Tanigawa in [63]. The more general
equation

(Φα(y′′))′′ + p(t)Φγ(y) = 0,

p(t) > 0, α > γ > 0, is considered by the same authors in [93]; all possible types of
positive solutions are examined. Jaroš, Kusano, and Tanigawa in [67] discuss the
existence and asymptotic behavior of RV solutions of the third order sublinear
equation

y′′′ + p(t)Φγ(y) = 0,

p(t) > 0, see also the papers [68, 69] by the same authors. The two-dimensional
system

x′ = δp(t)yα, y′ = δq(t)xβ,

p(t), q(t) > 0, α, β > 0, αβ < 1, δ = ±1, is considered by Jaroš and Kusano in [61];
strongly monotone RV solutions are analyzed, see also [63]. The same authors
study strongly monotone RV solutions of the second order system

x′′ = p(t)yα, y′′ = q(t)xβ,

p(t), q(t) > 0, α, β > 0, αβ < 1, see [62], and strongly decreasing solutions of the
system

x′′ = p1(t)xα1 + q1(t)yβ1 , y′′ = p2(t)xα2 + q2(t)yβ2 ,

where p1, q1, p2, q2 ∈ RV and α1, β1, α2, β2 > 0, as presented by Tanigawa at the
conference Equadiff 13. Kusano and Manojlović consider the odd-order equation

y(2n+1) + δp(t)Φ(γ) = 0,

p(t) > 0, 0 < γ < 1. Existence and asymptotic behavior of all possible types of
positive solutions to this equation is studied in the framework of regular variation;
the case δ = 1 in [89] and the case δ = −1 in [90].

In many results of the above mentioned papers, various modifications of the
following technique is utilized: Certain asymptotic relation is investigated which
can be considered as an “approximation” of the given differential equation rewrit-
ten to a certain integral form; properties of RV functions — mainly the Karamata
integration theorem — are then extensively used there.A priori bounds are ob-
tained. Further, the Schauder-Tychonoff fixed point theorem in locally convex
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spaces plays an important role. For some of the equations there has been made a
complete analysis of the existence and asymptotic behavior of regularly varying
solutions which belong to all possible Kiguradze type classes. Various utilizations
of this technique are presented in Subsections 4.3.2, 4.3.3, 4.3.4, and 4.3.6.

A somehow different approach is represented by the works of Evtukhov and
others. Note that — in some of these works — the conditions which are usually
imposed on the coefficients and nonlinearities in the equation are not directly in
terms of regular variation (or rapid variation), but in fact they belong to these
classes (or are close to them) due to known results (like the Karamata theorem)
which enables an alternative expression. Similar observations hold for some of
the classes of solutions which are studied. It is worthy of note that some of
these papers (especially the older ones) do not use (or even mention) the concept
of regular variation at all, even though the considerations are “close” to regular
variation. Typically, both types of equations (Emden-Fowler and Thomas Fermi)
are simultaneously studied and also both the cases (sub- and super-linearity)
are considered. Even a negative power or index in a nonlinearity is sometimes
allowed. The conditions for the existence of solutions in various asymptotic classes
(they are called Pω and have various modifications) are derived and asymptotic
representations are established. Evtukhov and Samoilenko in [36] consider the
equation

y(n) = δp(t)F(t),

p(t) > 0, δ = ±1. The second order case is studied by Evtukhov and Kharkov in [34]
and by Evtukhov and Abu Elshour in [32], and the third order case by Evtukhov
and Stekhun [37]. Bilozerowa and Evtukhov in [13] examine the generalization of
the Emden-Fowler equation in the following form

y(n) = δp(t)
n−1∏
i=0

Fi(y(i)),

p(t) > 0, δ = ±1; the second order case is considered in [33]. The equation

y′′ =

m∑
i=1

δipi(t)(1 + qi(t))Fi0(y)Fi1(y′)

is studied by Kozma in [82]. Evtukhov and Vladova in [39] concentrate on the
cyclic system

y′i = δipi(t)Fi(yi+1),

i = 1, . . . ,n, pi(t) > 0, δi = ±1, yn+1 means y1; the two dimensional case is studied
in [38]. Subsection 4.3.7 offers a more detailed description of the method used by
Evtukhov et al.

Another direction of the approach in the study of objects related to Emden-
Fowler type equations and regular variation is represented by the following three
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works. A substantial part of these works is devoted to a generalization of the
results described after (4.5). In other words, typical feature is that not only the
existence of RV solutions is studied and asymptotic formulas are established,
but, in addition, RV behavior of all solutions in a given basic asymptotic class of
solutions is guaranteed. Only some of the Kiguradze type subclasses have been
examined in such a way, namely the most extreme ones. Matucci and Řehák in
[123] study decreasing RV solutions of the coupled system(p(t)Φα(x′))′ = ϕ(t)Φλ(y),

(q(t)Φβ(y′))′ = ψ(t)Φµ(x),

p(t), r(t), ϕ(t), ψ(t) > 0, αβ > λµ, see Subsection 4.3.5 for couple of notes. Strongly
monotone solutions of the system

y′i = δpi(t)Fi(yi+1),

i = 1, . . . ,n, pi(t) > 0, δ = ±1, yn+1 means y1, are investigated by Řehák in [146]
and by Matucci and Řehák in [124]. See Subsection 4.3.8 where this approach is
discussed in details. A slight modification of the setting of the latter paper enables
us to include also equations with a general Φ-Laplacian, see Subsection 5.1.2.

4.3.2 Asymptotic behavior of SV and RV(1) solutions of sublinear
second order equations

The result in this section is selected from the paper [86] by Kusano and Manojlović
as a representant of the below described method. Consider the second order
Emden-Fowler type equation

y′′ + p(t)F(y) = 0, (4.14)

where p : [a,∞) → (0,∞) is a continuous function with p ∈ RV(σ), σ ∈ R, and
F : (0,∞)→ (0,∞) is an increasing continuous function with F ∈ RV(γ). The sub-
linearity condition 0 < γ < 1 is assumed. Recall that the following generalization
of the known Belohorec theorem holds: Equation (4.14) has a positive solution if
and only if

∫
∞

a p(s)F(s) ds < ∞.
Suppose that (4.14) has a positive solution y (called intermediate) such that

lim
t→∞

y(t)
t

= 0 and lim
t→∞

y(t) = ∞. (4.15)

From the conventional classification of eventually positive solutions, in addi-
tion to intermediate solutions, only the two following (and somehow easier)
classes are possible: limt→∞ y(t) = const > 0 (the so-called minimal solutions)
or limt→∞ x(t)/t = const > 0 (the so-called maximal solutions); the terminology
may come from the fact that a positive solution y always satisfies c1 ≤ x(t) ≤ c2t,
t ≥ Tx, for some positive constants c1, c2 ∈ R. It is clear that a minimal solution is
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in tr-SV and a maximal solution is in tr-RV(1). However, as we will see, there
can also be nontrivial SV or nontrivial RV(1) solutions which, of course, must
be sought among intermediate solutions. Note that in the sub-linear case, the
sufficient and necessary condition for the existence of a solution y satisfying (4.15)
reads as ∫

∞

a
p(s)F(s) ds < ∞ and

∫
∞

a
sp(s) ds = ∞,

see Kusano, Ogata, Usami [101]. Since y′(∞) = 0, integrating (4.14) first from t to
∞ and then from a to t, we have

y(t) = y(a) +

∫ t

a

∫
∞

s
p(τ)F(y(τ)) dτds, (4.16)

t ≥ a. It is somehow natural to search for a solution of (4.14) with specific asymp-
totic behavior at infinity as a fixed point of the integral operator

F y(t) = C +

∫ t

a

∫
∞

s
p(τ)F(y(τ)) dτds,

t ≥ a, in some suitably chosen setX of C[a,∞). A thorough analysis can be made of
the existence and the precise asymptotic behavior of RV solutions of the integral
asymptotic relation

y(t) ∼
∫ t

a

∫
∞

s
p(τ)F(y(τ)) dτds, t→∞, (4.17)

which can be considered as an “approximation” of (4.16). Note that (4.17) follows
from (4.16), using that y(∞) = ∞. Then the set X with the required properties can
be found by means of RV solutions of the integral asymptotic relation (4.17).

It is worthy of note that an important role in the proof is played by the fact
that the auxiliary linear second order equation possessesSV andRV(1) solutions.
More precisely, we will utilize the following statement which follows from Theo-
rem 2.2 and a simple application of the properties ofRV functions to the (positive)
solution y(t) = c1y1(t) + c2y2(t), c1, c2 ∈ R, {y1, y2} being a fundamental set of RV
solutions.

Lemma 4.1. If

lim
t→∞

t
∫
∞

t
q(s) ds = 0,

then every (eventually) positive solution of the equation y′′ + q(t)y = 0, q(t) > 0, is SV
or RV(1).

We now give the conditions guaranteeing the existence of nontrivial SV and
RV(1) solutions and establish asymptotic formulae.
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Theorem 4.6. Suppose that p ∈ RV(σ) and F ∈ RV(γ) with γ ∈ (0, 1).
(i) Equation (4.14) possesses nontrivial SV solutions if and only if σ = −2 and∫

∞

a sp(s) ds = ∞. The asymptotic behavior of each nontrivial SV solution y is governed
by the unique formula

y(t) ∼ F−1
(∫ t

a
sp(s) ds

)
as t→∞.

(ii) Let, moreover,
F(tu(t)) ∼ F(t)uγ(t) (4.18)

as t→∞, for every u ∈ SV∩C1. Equation (4.14) possesses nontrivialRV(1) solutions if
and only if σ = −γ−1 and

∫
∞

a p(s)F(s) ds < ∞. The asymptotic behavior of any nontrivial
RV(1) solution y is governed by the unique formula

y(t) ∼ t
(
(1 − γ)

∫
∞

t
p(s)F(s) ds

) 1
1−γ

as t→∞.

Proof. We give the proof only of the “if” part. The “only if” part is proved in [86]
and extensively uses the Karamata integration theorem and some basic properties
of RV functions. Let x0(t), x1(t) be the functions on [a,∞) defined by

x0(t) = F−1
(∫ t

a
sp(s) ds

)
,

x1(t)tξ
1

1−γ

1 (t), where ξ1(t) = (1 − γ)
∫
∞

t
p(s)F(s) ds ∈ SV.

The proof will be performed simultaneously and in two steps. In the first step
we show that (4.14) possesses intermediate solution y(t) satisfying kx0(t) ≤ y(t) ≤
Kx0(t) or kx1(t) ≤ y(t) ≤ Kx1(t), t ≥ T, for some positive constants T > a, k < 1,K > 1
depending on whether the assumptions in (i) or (ii) are satisfied, respectively.
Then, in the second step, with the help of Lemma 4.1, we show that solutions
constructed in the first step are nontrivial SV, resp. RV(1). Since we perform the
proofs for xi(t). i = 0, 1, simultaneously, the subscripts i = 0, 1 will be deleted in
the rest of the proof.

Step 1. It is not difficult to show — the Karamata integration theorem plays an
important role and we use (4.18) — that x satisfies the asymptotic relation

x(t) ∼
∫ t

a

∫
∞

s
p(τ)F(x(τ)) dτds (4.19)

as t → ∞. Let K, k be fixed positive constants such that K1−γ
≥ 4 and k1−γ

≤ 1/2.
Note that k < 1 and K > 2. Using that F(Kx(t)) ∼ KγF(x(t)), from (4.19) we have∫ t

a

∫
∞

s
p(τ)F(Kx(τ)) dτds ∼ Kγx(t)



124 Section 4.3

as t→∞, which implies the existence of T0 > a depending only on K such that∫ t

T0

∫
∞

s
p(τ)F(Kx(τ)) dτds ≤ 2Kγx(t),

t ≥ T0. Let such a T0 be fixed. We may assume that x(t) is increasing on [T0,∞).
Since x(t)→∞ and F(kx(t)) ∼ kγF(x(t)) as t→∞, from (4.19) we have∫ t

T0

∫
∞

s
p(τ)F(kx(τ)) dτds ∼ kγx(t)

as t→∞, and so there exists T1 > T0 depending only on k such that∫ t

T0

∫
∞

s
p(τ)F(kx(τ)) dτds ∼

kγ

2
x(t),

t ≥ T1. Let such a T1 be fixed. Let us defineX to be the set of continuous functions
y(t) on [T0,∞) satisfyingx(T0) ≤ y(t) ≤ Kx(t) for T0 ≤ t ≤ T1,

kx(t) ≤ y(t) ≤ Kx(t) for t ≥ T1.
(4.20)

It is clear that X is a closed convex subset of the locally convex space C[T0,∞)
equipped with the topology of uniform convergence on compact subintervals of
[T0,∞). We now define the integral operator

F y(t) = x(T0) +

∫ t

T0

∫
∞

s
p(τ)F(y(τ)) dτds,

t ≥ T0, and let it act on the set X defined above. It is not difficult to verify that
F is a self-map on X and sends X continuously to a relatively compact subset
of C[T0,∞). Therefore we are able to apply the Schauder-Tychonoff fixed point
theorem to conclude that there exists y ∈ X such that y(t) = F y(t), t ≥ T0. It is clear
from (4.20) that y satisfies

kx(t) ≤ y(t) ≤ Kx(t), (4.21)

t ≥ T0, which completes the proof of the first step.
Step 2. Let y be a solution obtained in the first step. It can be regarded as a

solution of the linear differential equation y′′ + q(t)y = 0 with q(t) = p(t) F(y(t))
y(t) . We

will show that

lim
t→∞

t
∫
∞

t
p(s)

F(y(s))
y(s)

ds = 0. (4.22)

Since y satisfies (4.21) it suffices to show that

lim
t→∞

t
∫
∞

t
p(s)

F(x(s))
x(s)

ds = 0.
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Suppose first that the assumption of part (i) are satisfied. The using that x(t) =
x0(t) ∈ SV is a solution of the differential equation x′0 = tp(t)F(x0) and applying
the L’Hospital rule we obtain

lim
t→∞

t
∫
∞

t
p(s)

F(x(s))
x(s)

ds = lim
t→∞

tx′0(t)
x0(t)

,

since for our SV x0 the last limit is equal to 0. If the assumptions of part (ii) are
satisfied, then y(t) = x1(t) ∈ RV(1). Using (4.18) with application of the L’Hospital
rule, we get

lim
t→∞

t
∫
∞

t
p(s)

F(x(s))
x(s)

ds = lim
t→∞

t
∫
∞

t
s−γ−1Lp(s)

F(s)ξ
γ

1−γ

1 (s)

sξ
1

1−γ

1 (s)
ds

= lim
t→∞

t
∫
∞

t

s−2Lp(s)LF(s)
ξ1(s)

ds

= lim
t→∞

Lp(t)LF(t)
ξ1(t)

.

Since ∫
∞

a

Lp(s)LF(s)
s

ds =

∫
∞

a
p(s)F(s) ds < ∞,

by the Karamata theorem we get

lim
t→∞

Lp(t)LF(t)∫
∞

t Lp(s)LF(s)/s ds
= 0,

and so (4.22) follows in both the cases (i) and (ii). It follows from Lemma 4.1 that
y ∈ SV ∪ RV(1). But if the assumptions in (i) hold, noting that x(t) = x0(t) ∈ SV,
we conclude that y must be SV, and if the assumptions in (ii) hold, since x(t) =
x1(t) ∈ RV(1), solution y must be RV(1). �

Condition (4.18) amounts to requiring that SV part LF of F satisfies

LF(tu(t)) ∼ LF(t) (4.23)

as t → ∞ for every u ∈ SV ∩ C1. Compare this condition with (4.76), (4.95), and
(4.96). Many (usual)SV functions satisfy (4.23). For instance, LF(t) =

∏N
k=1(lnk t)αk ,

αk ∈ R, or LF such that LF(t) → c ∈ (0,∞) as t → ∞, etc. Condition (4.23) is not
satisfied e.g. by LF(t) = exp

(∏N
k=1(lnk t)βk

)
, βk ∈ (0, 1).

4.3.3 SV solutions of second order super-linear equations

In this section which is based on Kusano, Manojlović [85] we discuss the existence
and behavior of SV solutions to the equation

y′′ + p(t)Φγ(y) = 0, (4.24)
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where p : [a,∞) → (0,∞) is a continuous function. The super-linearity condition
γ > 1 is assumed.

By the famous Atkinson result, (4.24) is oscillatory (i.e., all of its nontrivial
solutions are nonoscillatory) if and only if∫

∞

a
sp(s) ds = ∞.

Recall that under the assumption of sub-linearity (i.e., 0 < γ < 1), similar type
of result was established by Belohorec, and reads as follows: Equation (4.24) is
oscillatory if and only if ∫

∞

a
sγp(s) ds = ∞.

Eventually positive solutions can be classified into the three types in the same way
as in the previous section.

The proof of the main result heavily depends on a similar result for the linear
differential equation

y′′ + p(t)y = 0. (4.25)

More precisely, first we form an infinite family of linear equations of the form
(4.25) and then select with the help of fixed point techniques one equation from
the family whose solution would give birth to the desired RV solution of Emden-
Fowler equation (4.24). The feasibility of such a procedure is assured by the
extensive use of the following statement which can be proved by means of the
contraction mapping theorem. We define the mapping

F v(t) = t
∫
∞

t

(
v(s) + Q(s)

s

)2

ds

and consider it on the set{
v ∈ C0[T,∞) : 0 ≤ v(t) ≤ ϕ(t), t ≥ T

}
,

where Q, ϕ are defined below in the theorem, and C0[T,∞) denotes the set of all
continuous functions on [T,∞) which tend to zero.

Lemma 4.2 ([85]). Assume that there is a continuous function ϕ(t) : [a,∞) → (0,∞)
which is decreasing to 0 as t→∞ and such that Q(t) ≤ ϕ(t) for large t, where Q is defined
by

Q(t) = t
∫
∞

t
p(s) ds.

Then equation (4.25) has a SV solution y in the form

y(t) = exp
{∫ t

T

v(s) + Q(s)
s

ds
}
,
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t ≥ T, for some T > a, in which v(t) is a unique solution of the integral equation

v(t) = t
∫
∞

t

(
v(s) + Q(s)

s

)2

ds,

t ≥ T, and 0 ≤ v(t) ≤ 4ϕ2(t) for only t ≥ T.

We will use the notation

QL(t) = t
∫
∞

t
p(s)Lγ−1(s) ds.

Theorem 4.7. Let γ > 1. Assume that L ∈ SV is such that

L(t) = L(a) exp
{∫ t

a

δL(s)
s

ds
}
↗∞ with δL(t)↘ 0 (4.26)

as t→∞. Suppose that there exists a constant K > 0 such that

QL(t) ≤ KδL(t) for large t. (4.27)

Then equation (4.24) possesses a SV solution y such that y(t) ≤ L(t) for all large t.

Proof. First observe that due to (4.26) we have

δL(t) = t
L′(t)
L(t)

> 0,
∫
∞

a

δL(s)
s

ds = ∞.

Let µ ∈ (0, 1) be a given constant. There exists T > a such that (4.27) holds for t ≥ T
and

2δL(t) ≤ µ for t ≥ T,
2K

Lγ−1(T)
. (4.28)

Define Ξ to be the set of positive nondecreasing functions ξ(t) on [T,∞) satisfying
1 ≤ ξ(t) ≤ L(t)/L(T) for t ≥ T. It is clear that Ξ is a closed convex subset of the
locally convex space C[T,∞). For ξ ∈ Ξ put

pξ(t) = p(t)ξγ−1(t), Qξ(t) = t
∫
∞

t
pξ(s) ds,

and consider the family of ordinary linear differential equations

x′′ + pξ(t)x = 0, ξ ∈ Ξ. (4.29)

For each ξ ∈ Ξ we have by (4.27) and (4.28)

Qξ(t) ≤ t
∫
∞

t
p(s)

(
L(s)
L(T)

)γ−1

ds ≤
KδL(t)

Lγ−1(T)
≤
δL(t)

2
= ϕ(t), (4.30)
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t ≥ T, and so from Lemma 4.2, we see that for each ξ ∈ Ξ equation (4.29) has a SV
solution xξ, which is increasing and expressed in the form

xξ(t) = exp
{∫ t

T

vξ(s) + Qξ(s)
s

ds
}
, (4.31)

t ≥ T, where vξ is a unique solution of the integral equation

vξ(t) = t
∫
∞

t

(
vξ(s) + Qξ(s)

s

)2

ds,

t ≥ T, and

vξ(t) ≤ δ2
L(t) ≤

δL(t)
2
. (4.32)

Using (4.30) and (4.32) in (4.31), we conclude that

1 ≤ xξ(t) ≤ exp
{∫ t

T

δL(s)
s

ds
}

=
L(t)
L(T)

,

t ≥ T. Let us now define the mapping T : Ξ→ C([T,∞) by

Tξ(t) = xξ(t),

t ≥ T. It is immediate that TΞ ⊂ Ξ. Further, relative compactness of TΞ follows
from the Arzela-Ascoli lemma. To show thatT is continuous is a little bit laborious,
and we just note here that the Lebesgue dominated convergence theorem plays
an important role. For details see [85]. Thus, all the hypotheses of the Schauder-
Tychonoff fixed point theorem are fulfilled, and so there exists ξ ∈ Ξ such that
ξ(t) = Tξ(t) = xξ(t) for t ≥ T. Since xξ(t) is a solution of linear differential equation
(4.29), we have for t ≥ T that

0 = x′′ξ (t) + pξ(t)xξ(t) = ξ′′(t) + p(t)ξγ−1(t)ξ(t) = ξ′′(t) + p(t)ξγ(t),

which implies that ξ is a solution of equation (4.24). It is obvious that ξ ∈ SV. �

Example 1 in [85] suggests that super-linear Emden-Fowler equations may have
both trivial and nontrivialSV solutions at the same time. It is therefore important
to establish a means by which one can distinguish nontrivial SV solutions from
trivial ones for a given Emden-Fowler equation. Under the stronger assumption
than (4.27), one can determine the exact asymptotic behavior of any nontrivialSV
solution of super-linear Emden-Fowler equations as the following theorem shows.

Theorem 4.8. Let γ > 1 and (4.26) hold. Suppose that p ∈ RV(−ν) for some ν > 1 and
that

QL(t) ∼ t
L′(t)
L(t)

= δL(t)
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as t → ∞, where δL is required to be SV function. Then equation (4.24) may possess
a SV solution y only if ν = 2, and in this case any nontrivial SV solution of equation
(4.24) has one and the same asymptotic behavior

y(t) ∼ L(t) (4.33)

as t→∞.

Proof. Since p ∈ RV(−ν), we have that p(t) = t−νLp(t), Lp ∈ SV, and application of
the Karamata integration theorem gives

QL(t) = t
∫
∞

t
s−νLp(s)Lγ−1(s) ds ∼

t2−ν

ν − 1
Lp(t)Lγ−1(t) (4.34)

as t → ∞. Thus, due to the assumption that QL(t) ∼ δL(t) ∈ SV as t → ∞, from
(4.34) we conclude that ν = 2 and

Lp(t) ∼ t
L′(t)
Lγ(t)

as t → ∞. Suppose that (4.24) has a nontrivial SV solution y. Integrating (4.24)
from t to∞ and using the Karamata integration theorem, we have

y′(t) =

∫
∞

t
p(s)yγ(s) ds =

∫
∞

t

Lp(s)

s2 yγ(s) ds ∼
Lp(t)

t
yγ(t) ∼

L′(t)
Lγ(t)

yγ(t)

as t→∞, which implies that
y′(t)
yγ(t)

∼
L′(t)
Lγ(t)

(4.35)

as t→ ∞. Integrating (4.35) over [t,∞) and noting that y(t)→ ∞ and L(t)→ ∞ as
t→∞, we obtain

y1−γ(t)
γ − 1

∼
L1−γ(t)
γ − 1

as→∞, which immediately yields (4.33). �

4.3.4 Intermediate generalized RV solutions of second order
sub-half-linear equations

In this section which is based on the paper [91] by Kusano, Manojlović, and
Milošević we want to concisely describe how the approach based on the approx-
imation of certain Emden-Fowler equation in an integral form by means of an
asymptotic relation and on the use of the fixed point theorem can be combined
with the concept of general regularly varying functions.

Consider the equation

(r(t)Φα(y′))′ + p(t)Φβ(y) = 0, (4.36)
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where α > β > 0 (which is the sub-half-linearity condition), r, p are continuous
functions, and r satisfies

∫
∞

a r−
1
α (t) dt < ∞. Note that a similar analysis in the

case where this integral diverges was made by Jaroš, Kusano, Manojlović in [64].
Denote

R(t) =

∫
∞

t
r−

1
α (s) ds.

We have the following conventional classification of positive solutions :
(i) limt→∞ y(t) = const > 0,
(ii) limt→∞ y(t) = 0, limt→∞ y(t)/R(t) = ∞,
(iii) limt→∞ y(t)/R(t) = const > 0.

Solutions of type (ii) are called intermediate solutions. Sharp conditions for the
existence of such solutions was obtained by Kamo and Usami in [72].

Let y be an intermediate solution of (4.36) on [a,∞). Then
∫
∞

a p(s)yβ(s) ds = ∞
and

y(t) =

∫
∞

t

1

r
1
α

(
r(a)(−y′(s))α +

∫ s

a
p(τ)yβ(τ) dτ

) 1
α

ds, (4.37)

t ≥ a. It follows therefore that y satisfies the integral asymptotic relation

y(t) ∼
∫
∞

t

1

r
1
α

(∫ s

a
p(τ)yβ(τ) dτ

) 1
α

ds, (4.38)

as t→∞, which is regarded as an “approximation” of (4.37) at infinity. The proofs
of the main results are essentially based on the fact that a thorough knowledge of
the existence and asymptotic behavior of generalizedRV solutions of (4.38) can be
acquired. As a matter of fact, the “only if” part of the below presented theorem is
an immediate consequence of manipulation of (4.38) by means of regular variation.
The “if” part is proved by solving the integral equation

y(t) =

∫
∞

t

1

r
1
α

(∫ s

a
p(τ)yβ(τ) dτ

) 1
α

ds,

with the help of fixed point technique, the essence of which is based on detecting
fixed points of the integral operator

F y(t) =

∫
∞

t

1

r
1
α

(∫ s

a
p(τ)yβ(τ) dτ

) 1
α

ds,

lying in the set

X = {y ∈ C[a,∞) : mx(t) ≤ y(t) ≤Mx(t), t ≥ a},

m,M being a suitable numbers, and

x(t) =

Rα+1(t)r
1
α (t)p(t)

α(−ρ)α(ρ + 1)


1
α−β

,
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where ρ is given below in the theorem. The operator F is continuous self-map
on X and sends it into a relatively compact subset of C[a,∞). To show that the
obtained solution y is indeed RV with respect to 1/R, we apply the generalized
L’Hospital rule which yields

y(t) ∼
∫
∞

t

1

r
1
α

(∫ s

a
p(τ)xβ(τ) dτ

) 1
α

ds

as t→∞.
Thus we have briefly described the proof of the following theorem.

Theorem 4.9. Let r ∈ RV1/R(η) and p ∈ RV1/R(σ). Equation (4.36) has intermediate
solutions y ∈ RV1/R(ρ) with ρ ∈ (−1, 0) if and only if

β −
η

α
+ 1 < σ < α −

η

α
+ 1, (4.39)

in which case ρ is given by

ρ =
σ − α − 1 +

η
α

α − β

and asymptotic behavior of any such solution y is governed by the unique formula

y(t) ∼

Rα+1(t)r
1
α (t)p(t)

α(−ρ)α(ρ + 1)


1
α−β

as t→∞.

Note that the cases where σ is equal to the border values in (4.39) are also
discussed in [91] and lead to the existence of nontrivial SV1/R and RV1/R(−1)
solutions.

4.3.5 Strongly monotone solutions of coupled systems

In the first part of this section we present the results concerning the so-called
strongly decreasing solutions of the coupled system(p(t)Φα(x′))′ = ϕ(t)Φλ(y),

(q(t)Φβ(y′))′ = ψ(t)Φµ(x),
(4.40)

which were established by Matucci, Řehák in [123]. We do not give the proof since
its main ideas can be extracted from the proof of subsequent Theorem 4.15, which
deals with a more general case. Note that originally, there are some differences
between the proofs. Rather we focus on comments and applications. In the second
part, we mention the work of Jaroš, Kusano [62] in which the coupled system in
a more special form is considered; the approach used there is based on similar
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ideas as in the previous subsections. We present a result which deals with mixed
strongly monotone solutions.

In (4.40) we assume that α, β, λ, µ are positive constants, and p, q, ϕ, ψ are posi-
tive continuous functions defined on [a,∞), a ≥ 0. Further we suppose that system
(4.40) is subhomogeneous (at∞), i.e.,

αβ > λµ.

In contrast to the most of related works, we do not pose in general any condition
on divergence or convergence of the integrals

P =

∫
∞

a
p−

1
α (s) ds, Q =

∫
∞

a
q−

1
β (s) ds, (4.41)

and we do not explicitly distinguish among particular cases. In fact, all possible
cases (including the mixed ones) are covered by the results. If (x, y) is a solution
of (4.40), then by quasiderivatives denoted as x[1], y[1], we mean

x[1] = p Φα(x′), y[1] = q Φβ(y′).

Let DS denote the set of all positive decreasing solutions of (4.40), i.e., all
solutions whose components are both eventually positive and decreasing. Note
that, due to the sign conditions on the coefficients, any solution of (4.40) has
necessarily both components eventually of one sign and monotone. If P = Q = ∞,
then limt→∞ x[1](t) = limt→∞ y[1](t) = 0 for any (x, y) ∈ DS. Indeed, −x[1] is
eventually positive decreasing. If limt→∞ −x[1](t) = c > 0, then p(t)(−x′(t))α ≥ c
or −x′(t) ≥ c

1
α p−

1
α (t), t ≥ t0 with some t0 ≥ a. Integrating the latter inequality, we

get x(t) ≤ x(t0) − c
1
α

∫ t
t0

p−
1
α (s) ds → −∞ as t → ∞, a contradiction. Similarly we

prove limt→∞ y[1](t) = 0. However, in general, for positive decreasing solutions,
the limits of quasiderivatives do not need to be zero. Observe that any positive
decreasing solution have both the components and their quasiderivatives tending
to nonnegative resp. nonpositive numbers. Among all these solutions we are
interested in the so called strongly decreasing solutions, which we denote as

SDS =
{
(x, y) ∈ DS : lim

t→∞
x(t) = lim

t→∞
y(t) = lim

t→∞
x[1](t) = lim

t→∞
y[1](t) = 0

}
;

notice that other types ofDS solutions are somehow easier.

The integral expressions below play important roles in existence results for
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strongly decreasing solutions:

I1(t) :=
∫
∞

t

 1
p(u)

∫
∞

u
ϕ(s)

∫ ∞

s

(
1

q(r)

∫
∞

r
ψ(τ) dτ

) 1
β

dr


λ

ds


1
α

du,

I2(t) :=
∫
∞

t

 1
q(u)

∫
∞

u
ψ(s)

∫ ∞

s

(
1

p(r)

∫
∞

r
ϕ(τ) dτ

) 1
α

dr


µ

ds


1
β

du,

I3(t) :=
∫
∞

t
ϕ(u)


∫
∞

u

 1
q(s)

∫
∞

s
ψ(r)

∫ ∞

r

1

p
1
α (τ)

dτ

µ dr


1
β

ds


λ

du,

I4(t) :=
∫
∞

t
ψ(u)


∫
∞

u

 1
p(s)

∫
∞

s
ϕ(r)

∫ ∞

r

1

q
1
β (τ)

dτ


λ

dr


1
α

ds


µ

du.

The following existence result holds. Its proof can be found in the paper [123] by
Matucci, Řehák; the Schauder-Tychonoff fixed point theorem is the main tool.

Theorem 4.10. If Ii(a) < ∞ for at least one index i ∈ {1, 2, 3, 4}, then SDS , ∅.

Next we describe the so-called reciprocity principle. This tool is very useful in the
proof of the existence result, but also in the proof of the main result devoted to exact
asymptotic behavior. In fact, it enables us to extend the existence and asymptotic
results made under certain setting to “new” situations. Let (x, y) ∈ DS. Set
u = −x[1], v = −y[1]. Then (u, v) is an eventually positive decreasing solution of the
reciprocal system 

(
1

ϕ
1
λ (t)

Φ 1
λ
(u′)

)′
= 1

q
1
β
Φ 1

β
(v),(

1

ψ
1
µ (t)

Φ 1
µ
(v′)

)′
= 1

p
1
α

Φ 1
α
(u).

(4.42)

Observe that (4.42) has the same structure as (4.40), and is subhomogeneous.
Indeed, 1/(λµ) > 1/(αβ). Moreover, the quasiderivatives of u and v, i.e., ϕ−

1
λΦ 1

λ
(u′)

and ψ−
1
µΦ 1

µ
(v′), are equal to −y and −x, respectively. Conversely, if (u, v) is an

eventually positive decreasing solution of (4.42) and we set x = −ψ−
1
µΦ 1

µ
(v′) and

y = −ϕ−
1
λΦ 1

λ
(u′), then (x, y) ∈ DS and x[1] = −u, y[1] = −v. Hence, with the use of

these relations, it holds

(x, y) is a strongly decreasing solution of (4.40)
m (4.43)

(u, v) is a strongly decreasing solution of (4.42).
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It is easy to see that the roles which are played by the integrals I1 and I2 for system
(4.40) are played by the integrals I3 and I4, respectively, for system (4.42).

From now on we assume

p ∈ RV(γ), q ∈ RV(δ), ϕ ∈ RV(σ), ψ ∈ RV(%).

We set

Λ =
1

αβ − λµ

and
ν = Λ

(
β(α − γ + 1 + σ) + λ(β − δ + 1 + %)

)
,

ω = Λ
(
α(β − δ + 1 + %) + µ(α − γ + 1 + σ)

)
.

(4.44)

Further we denote

ν[1] = (ν − 1)α + γ, ω[1] = (ω − 1)β + δ. (4.45)

Theorem 4.11. Assume

ν < 0, ω < 0, ν[1] < 0, ω[1] < 0. (4.46)

ThenSDS , ∅. Further, for every (x, y) ∈ SDS there hold (x, y) ∈ RV(ν)×RV(ω) and

x(t) ∼
(
K1K

λ
α
2

)αβΛ
tνL1(t), y(t) ∼

(
K2K

µ
β

1

)αβΛ
tωL2(t) (4.47)

as t→∞, where

K1 =
−1

ν
(
−ν[1]) 1

α

, K2 =
−1

ω
(
−ω[1]) 1

β

, (4.48)

and

L1 =

LβϕLλψ

LβpLλq


Λ

∈ SV, L2 =

LµϕLαψ
Lµp Lαq


Λ

∈ SV.

Remark 4.4. (i) Under the assumptions of Theorem 4.11, the quasiderivatives of a
strongly decreasing solution (x, y) of (4.40) satisfy

−x[1](t) ∼

(
K2K

µ
β

1

)αβΛλ
−ν[1]

tν
[1]

Lϕ(t)Lλ2 (t) ∈ RV
(
ν[1]

)
−y[1](t) ∼

(
K1K

λ
α
2

)αβΛµ
−ω[1]

tω
[1]

Lψ(t)Lµ1 (t) ∈ RV
(
ω[1]

)
.
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(ii) The asymptotic formula (4.47) can alternatively be written in terms of the
coefficients,

x(t) ∼ C1

(
tα+1ϕ(t)

p(t)

)β/(αβ−λµ) ( tβ+1ψ(t)
q(t)

)λ/(αβ−λµ)

,

y(t) ∼ C2

(
tβ+1ψ(t)

q(t)

)α/(αβ−λµ) ( tα+1ϕ(t)
p(t)

)µ/(αβ−λµ)

as t→∞, where C1 = (K1Kλ/α2 )αβ/(αβ−λµ) and C2 = (K2Kµ/β1 )αβ/(αβ−λµ).

(iii) If the components of a (decreasing) regularly varying solution to (4.40) are
eventually convex, then they are both normalized regularly varying. Note that
the eventual convexity of decreasing solutions of (4.40) can be guaranteed, e.g., by
p(t) = q(t) = 1.

(iv) The assumptions of Theorem 4.11 can be replaced by any of the following
inequalities

% + 1 < min
{

0, δ − β, δ − β −
β

λ
(σ + 1), δ − β −

β

λ
(σ + 1 + α − γ)

}
(4.49)

or

σ + 1 < min
{

0, γ − α, γ − α −
α
µ

(% + 1), γ − α −
α
µ

(% + 1 + β − δ)
}

(4.50)

or

α − γ < min
{

0,−
α
µ

(% + 1),−
α
µ

(% + 1 + β − δ),

−
α
µ

(% + 1 + β − δ) −
αβ

λµ
(σ + 1)

}
(4.51)

or

β − δ < min
{

0,−
β

λ
(σ + 1),−

β

λ
(σ + 1 + α − γ),

−
β

λ
(σ + 1 + α − γ) −

αβ

λµ
(% + 1)

}
, (4.52)

and the statement remains valid. Moreover, the following equivalence among the
sufficient conditions hold:

(4.46) ⇔ (4.49) or (4.50) or (4.51) or (4.52). (4.53)

As an example of typical setting, assume P = Q = ∞. Then necessarily α ≥ γ
and β ≥ δ; the sufficient condition (4.46) reduces to

ν < 0, ω < 0. (4.54)
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Indeed, ν[1] = να − α + γ ≤ νγ < 0. Similarly we obtain ω[1] < 0.

Another example of a typical situation is when∫
∞

a
ϕ(t) dt =

∫
∞

a
ψ(t) dt = ∞

is assumed. This condition implies σ + 1 ≥ 0, % + 1 ≥ 0, and (4.46) reduces to
ν[1] < 0, ω[1] < 0. It can be also quite easily observed how the “mixed” cases, for
instance, ∫

∞

a
p−

1
α (s) ds = ∞,

∫
∞

a
q−

1
β (s) ds < ∞,

or ∫
∞

a
ϕ(t) dt = ∞,

∫
∞

a
ψ(t) dt < ∞

can be covered by the above results.

The main theorem can be applied also in some special situations where the
coefficients of (4.40) are not regularly varying; we use a change of the independent
variable. Let s = ζ(t), where ζ is a differentiable function such that ζ′(t) , 0 on
[a,∞). Set (w, z)(s) = (x, y)(ζ−1(s)), ζ−1 being the inverse of ζ. Since d/dt = ζ′(t)d/ds,
system (4.40) is transformed into the system

d
ds

(
p̂(s)Φα

(dw
ds

))
= ϕ̂(s)Φλ(z),

d
ds

(
q̂(s)Φβ

(dz
ds

))
= ψ̂(s)Φµ(w),

(4.55)

where
p̂ := (p ◦ ζ−1) ·Φα(ζ′ ◦ ζ−1), q̂ := (q ◦ ζ−1) ·Φβ(ζ′ ◦ ζ−1),

ϕ̂ :=
ϕ ◦ ζ−1

ζ′ ◦ ζ−1
, ψ̂ :=

ψ ◦ ζ−1

ζ′ ◦ ζ−1
.

Clearly, (4.55) is of the form (4.40) and is subhomogeneous. If ζ is unbounded
with ζ′ > 0 and such that p̂, q̂, ϕ̂, ψ̂ ∈

⋃
ϑ∈RRV(ϑ), then the results can be applied

to (4.55). To illustrate a possible application, take, for example,

p(t) = eγth1(t), q(t) = eδth2(t), ϕ(t) = eσth3(t), ψ(t) = e%th4(t),

where γ, δ, σ, % ∈ R and hi ∈
⋃
ϑ∈RRV(ϑ), i = 1, 2, 3, 4. In such a case we can set

ζ(t) = et. Thus t = ln s and [a,∞) is transformed into another right half-line. We
then get

p̂(s) = sγ+αH1(s) ∈ RV(γ + α), where H1 := h1 ◦ ln,

since H1 ∈ RV(γ1 · 0) = RV(0) = SV, γ1 being the index of regular variation of h1.
Similarly,

q̂ ∈ RV(δ + β), ϕ̂ ∈ RV(σ − 1), ψ̂ ∈ RV(% − 1).
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Consequently, Theorem 4.11 can directly be applied to system (4.55), and hereby
to the original system through the transformation.

We conclude this part by the application of Theorem 4.11 to the widely studied
4th-order equation

x′′′′ = ψ(t)Φµ(x). (4.56)

The below mentioned observations can be easily extended to some more general
4th-order equations, but for comparison purposes we take the form (4.56), which
appears quite frequently in the literature. We assume ψ ∈ RV(%) and µ > 0.
This equation is equivalent to system (4.40), where we set α = β = λ = 1 and
p(t) = q(t) = ϕ(t) = 1. Then γ = δ = σ = 0, Lp(t) = Lq(t) = Lϕ(t) = 1, and
Λ = 1/(1 − µ). The subhomogeneity assumption reads as µ < 1. Further,

ν =
% + 4
1 − µ

, ω =
% + 2 + 2µ

1 − µ
, ν[1] =

% + 3 + µ

1 − µ
, ω[1] =

% + 1 + 3µ
1 − µ

.

A strongly decreasing solution x of (4.56) is a positive solution such that

lim
t→∞

x(t) = lim
t→∞

x′(t) = lim
t→∞

x′′(t) = lim
t→∞

x′′′(t) = 0.

It is easy to see that in order (4.46) to be fulfilled, it is sufficient to take % < −4.
Alternatively, we can check how (4.49) is verified (this is the only one among
conditions (4.49), (4.50), (4.51), (4.52), that can be satisfied in this situation). Thus,
under the assumptions 0 < µ < 1 and % < −4, Theorem 4.11 assures that (4.56)
possesses a strongly decreasing solution and for any such a solution x it holds

x(t) ∼

 (1 − µ)4t%+4Lψ(t)∏4
i=1[% + i + (4 − i)µ]


1

1−µ

as t→∞.
A special case of (4.40) in the form

x′′ = ϕ(t)yλ, y′′ = ψ(t)xµ, (4.57)

ϕ(t) > 0, ψ(t) > 0, λ, µ > 0, λµ < 1, was investigated in [62] by Jaroš and Ku-
sano. More precisely, strongly monotone solutions were studied there. Since the
approach is based on similar ideas to those described in Subsections 4.3.2–4.3.4 (ap-
proximation by means of a suitable integral asymptotic relation, a-priori bounds,
and the Schauder fixed point theorem) we present one selected result without
proof. It concerns existence and asymptotic behavior of mixed strongly mono-
tone solutions to (4.57), i.e., the positive solutions where one of the components is
strongly decreasing, while the other is strongly increasing.

Theorem 4.12. Suppose that ϕ ∈ RV(σ), ψ ∈ RV(%). System (4.57) possesses regularly
varying solutions (x, y) such that

x ∈ RV(ν), y ∈ RV(ω), ν < 1, ω > 1,
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if and only if
σ + 2 + λ(% + 2) < 0, µ(λ + σ + 2) + % + 1 > 0,

in which case ν and ω are given by

ν =
σ + 2 + λ(% + 2)

1 − λµ
, ω =

µ(σ + 2) + % + 2
1 − λµ

,

and the asymptotic behavior of any such solution is governed by the formulas

x(t) ∼
(

t2(λ+1)ϕ(t)ψλ(t)
ν(ν − 1)[ω(ω − 1)]λ

) 1
1−λµ

, y(t) ∼
(

t2(µ+1)ϕµ(t)ψ(t)
[ν(ν − 1)]µω(ω − 1)

) 1
1−λµ

as t→∞.

4.3.6 Overall structure of RV solutions to odd-order equations

In this section we present a description of overall structure of RV solutions to the
equation

y2n+1 + p(t)Φγ(y) = 0, (4.58)

where 0 < γ < 1 and p : [a,∞)→ (0,∞) is a continuous function. Such a description
is the result of considerations made by Kusano and Manojlović in [89]. Some of the
ideas in the proofs are similar to those used e.g. in Subsection 4.3.3. In particular,
here again an integral asymptotic relation is investigated, which can be seen as an
approximation of an integral form of equation (4.58); this time the relation reads
as

y(t) ∼
∫ t

a

(t − s)k−1

(k − 1)!

∫
∞

s

(r − s)2n−k

(2n − k)!
p(τ)yγ(τ)dτds,

k is assumed to be even integer such that 2 ≤ k ≤ 2n. In addition, the tools
like the Schauder-Tychonoff fixed point theorem and the Karamata integration
theorem again play important roles in the proofs. In classifying eventually positive
solutions of (4.58), the well-known Kiguradze lemma is utilized.

Assume that p ∈ RV(σ). Denote with RS the set of all RV solutions of (4.58),
and define the subsets

RS(%) = RS ∩ RV(%),
tr-RS(%) = RS ∩ tr-RV(%),

ntr-RS(%) = RS ∩ ntr-RV(%).

Using notation γm = m(1−γ)− 2n− 1,m ∈ {0, 1, 2, . . . , 2n}, to make the full analysis
we separately consider the case σ < γ0 = −2n − 1 together with the central cases

σ ∈ (γ0, γ1) ∪ (γ2, γ3) ∪ · · · ∪ (γ2n−2, γ2n−1)

or
σ ∈ (γ1, γ2) ∪ (γ3, γ4) ∪ · · · ∪ (γ2n−1, γ2n),
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and the border cases

σ ∈ {γ0, γ2, . . . , γ2n} or σ ∈ {γ1, γ3, . . . , γ2n−1}.

Denote

Q j =

∫
∞

a
t2n− j(1−γ)p(s) ds,

j = 0, 1, . . . , 2n. The structure of RV solutions to equation (4.58) reads then as
follows:

(i) If σ < γ0, then

RS =

2n⋃
j=0

tr-RS( j) ∪ RS
(
σ + 2n + 1

1 − γ

)
.

(ii) If σ = γ0 and Q0 < ∞, then

RS =

2n⋃
j=0

tr-RS( j) ∪ ntr-RS(0).

(iii) If σ = γ0 and Q0 = ∞, then

RS =

2n⋃
j=1

tr-RS( j).

(iv) If σ = γm for some m ∈ {1, 3, . . . , 2n − 1} and Qm < ∞, then

RS =

2n⋃
j=m

tr-RS( j).

(v) If σ = γm for some m ∈ {1, 3, . . . , 2n − 1} and Qm = ∞, then

RS =

2n⋃
j=m+1

tr-RS( j) ∪ ntr-RS(m).

(vi) If σ ∈ (γm−1, γm) for some m ∈ {2, 4, . . . , 2n − 2}, then

RS =

2n⋃
j=m

tr-RS( j) ∪ ntr-RS
(
σ + 2n + 1

1 − γ

)
.

(vii) If σ ∈ (γm, γm+1) for some m ∈ {0, 2, . . . , 2n − 2}, then

RS =

2n⋃
j=m+1

tr-RS( j).



140 Section 4.3

(viii) If σ = γm for some m ∈ {2, 4, . . . , 2n} and Qm < ∞, then

RS =

2n⋃
j=m

tr-RS( j) ∪ ntr-RS(m).

(ix) If σ = γm for some m ∈ {2, 4, . . . , 2n − 2} and Qm = ∞, then

RS =

2n⋃
j=m+1

tr-RS( j).

(x) If σ = γ2n and Q2n = ∞, then
RS = ∅.

(xi) If σ > γ2n, then
RS = ∅.

A similar description was obtained for the equation

y2n+1 = p(t)Φγ(y),

where 0 < γ < 1 and p : [a,∞)→ (0,∞) is a continuous RV function, in the paper
[90] by Kusano and Manojlović.

For further related information see Remark 4.5-(v).

4.3.7 Pω solutions of n-th order equations

In this section we present a selected result from Evtukhov, Samoilenko [36] which
represents the approach of Evtukhov et al. to the investigation of Emden-Fowler
equation in the framework close to regular variation.

Consider the n-th order differential equation

y(n) = δp(t)F(y), (4.59)

where δ ∈ {−1, 1}, p : [a, ω) → (0,∞) is a continuous function, −∞ < a < ω ≤ ∞,
and F : ∆T → (0,∞) is a continuous RVT function with the index α , 1; here T is
zero or ±∞, and ∆T is an one-sided neighborhood of T. By F ∈ RVT(α) we mean
here that

F(u) = |u|αLF(u) with lim
u→T,u∈∆T

LF(λu)
LF(u)

for each λ > 0.
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A solution y of (4.59) is called aPω(T, λ0) solution, −∞ ≤ λ0 ≤ ∞, if it is defined
on an interval [t0, ω) ⊂ [a, ω) and satisfies the conditions

y : [t0, ω)→ ∆T, lim
t→ω

y(t) = T, (4.60)

lim
t→ω

y(k)(t) =

either 0
or ±∞

(k = 1, . . . ,n),

lim
t→ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0. (4.61)

Take a number b ∈ ∆T such that |b| < 1 if T = 0, b > 1 if T = ∞, b < −1 if T = −∞
and set ∆T(b) = [b,T) if ∆T is a left neighborhood of T, ∆T(b) = (T, b] if ∆T is a right
neighborhood of T. It follows from the definition that each Pω(T, λ0) solution of
equation (4.59) and all of its derivatives of order less than or equal to n are nonzero
on some interval [t1, ω) ⊂ [t0, ω); moreover, the first derivative of the solution is
positive on this interval if ∆T is a left neighborhood of T and negative otherwise.
With regard for this fact and the choice of b, we introduce two numbers

µ0 = sgn b, µ1 =

1 if ∆T is a left neighborhood of T
−1 if ∆T is a right neighborhood of T,

which determine the signs of thePω(T, λ0) solution and its first derivative, respec-
tively, on the interval [t1, ω). In view of (4.60), we assume that y(t) ∈ ∆T(b) for
t ∈ [t1, ω). Further, we put

tω =

t for ω = ∞

t − ω for ω < ∞.

Set

J(t) =

∫ t

K
sn−1
ω p(s) ds, where K =

a if
∫ ω

a sn−1
ω p(s) ds = ∞

ω if
∫ ω

a sn−1
ω p(s) ds < ∞

Theorem 4.13. Let
λ0 = R \

{
0,

1
2
,

2
3
, . . . ,

n − 2
n − 1

, 1
}
.

Then for the existence of Pω(T, λ0) solutions of (4.59), it is necessary and, if the algebraic
equation

(1 + %)
n−1∏
i=1

(Ai + %) = α
n−1∏
i=1

Ai (4.62)

for %, where Ai = (n − i)λ0 − (n − i − 1), i = 1, . . . ,n − 1, has no roots with zero real part,
sufficient that

lim
t→ω

tωJ′(t)
J(t)

=
(1 − α)A1

λ0 − 1
(4.63)
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and the following inequalities hold

δµ0[(λ0 − 1)tω]n
n−1∏
i=1

Ai > 0, µ0µ1A1(λ0 − 1)tω > 0. (4.64)

Moreover, there exists an m-parameter family of such solutions if, among the roots of the
algebraic equation, there are m roots (with regard of multiplicities) whose real part has the
same sign as the function (1 − λ0)tω. Furthemore, each solution of this kind admits the
asymptotic representations

y(t)
F(y(t))

= δ[(λ0 − 1)tω]np(t)
n−1∏
i=1

1
Ai

(1 + o(1)) as t→ ω, (4.65)

y(k)(t)
y(k−1)(t)

=
Ak

(λ0 − 1)tω
(1 + o(1)), k = 1, . . . ,n − 1, as t→ ω. (4.66)

Proof. First we introduce the useful function

G(u) =

∫ u

B

ds
F(s)

, B =

b for
∣∣∣∣∫ T

B
ds

F(s)

∣∣∣∣ = ∞

T for
∣∣∣∣∫ T

B
ds

F(s)

∣∣∣∣ < ∞.
Note its properties needed in the sequel. Since G′(u) > 0 for u ∈ ∆T(b), we have
G : ∆T(b)→ ∆Z(c), where

∆Z(c) =

[c,Z) for ∆T(b) = [b,T)
(Z, c] for ∆T(b) = (T, b],

c =

∫ b

B

ds
F(s)

, Z =


0 for B = T
∞ for B = b < T
−∞ for B = b > T,

and moreover,

lim
u→T,u∈∆T(b)

F(u) =
µ0

1 − α
lim

u→T,u∈∆T(b)
|u|1−α = Z, (4.67)

and there exists an inverse continuously differentiable increasing function G−1 :
∆Z(c)→ ∆T(b) such that

lim
z→Z, z∈∆Z(c)

G−1(z) = T. (4.68)

By virtue of properties of RVT functions and the L’Hospital rule, we have the
relation

lim
u→T,u∈∆T(b)

u
G(u)F(u)

= 1 − α. (4.69)
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Necessity. Let

λ0 = R \
{
0,

1
2
,

2
3
, . . . ,

n − 2
n − 1

, 1
}

and let y : [t0, ω)→ ∆T, be an arbitrary Pω(T, λ0) solution of equation (4.59). Then
there exists t1 ∈ [t0, ω) such that y(t) ∈ ∆T(b), sgn y(t) = µ0, and sgn y′(t) = µ1 for
t ∈ [t1, ω). In addition, by [36, Lemma 2.1], we have the asymptotic relations

y(k−1)(t) ∼ [(λ0 − 1)tω]n−k
n−1∏
i=1

1
Ai

y(n−1)(t), k = 1, . . . ,n − 1, as t→ ω,

where Ai , 0, i = 1, . . . ,n − 1. They imply asymptotic representations (4.66), and,
by virtue of (4.61), we have

y(n)(t) ∼
1
λ0

(
y(n−1)(t)
y(n−2)(t)

)2

y(n−2)(t) =
1
λ0

(
y(n−1)(t)
y(n−2)(t)

)2 y(n−2)(t)
y(n−3)(t)

· · ·
y′′(t)
y′(t)

y′(t)

∼
λ0

(λ0 − 1)2t2
ω

·
An−2

(λ0 − 1)tω
· · ·

a2

(λ0 − 1)tω
y′(t) =

∏n−1
i=2 Ai

[(λ0 − 1)tω]n−1
y′(t)

as t → ω. Therefore by virtue of (4.59), we have (4.65). By integrating this
asymptotic relation from t1 to t, t ∈ (t1, ω), and by taking into account conditions
(4.60) and (4.67), we obtain the relation

G(y(t)) = δ(λ0 − 1)n−1
n−1∏
i=2

1
Ai

J(t)[1 + o(1)]

as t→ ω, which, together with (4.69), implies the representation

δ(λ0 − 1)n−1
n−1∏
i=2

1
Ai

J(t)[1 + o(1)] (4.70)

as t→ ω. It follows from (4.65) and (4.70) that

y′(t)
y(t)

=
tn−1
ω p(t)

(1 − α)J(t)
(1 + o(1))

as t→ ω. Therefore, by virtue of (4.66) for k = 1, we have

A1

(λ0 − 1)tω
=

tn−1
ω p(t)

(1 − α)J(t)
(1 + o(1))

as t → ω. Consequently, condition (4.63) is satisfied, and relation (4.70) can be
represented in the form (4.65). In addition, since sgn y(t) = µ0 and sgn y′(t) = µ1
for t ∈ [t1, ω), it follows from (4.65) and (4.66) that inequalities (4.64) hold.
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Sufficiency. Let conditions (4.63) and (4.64) be satisfied for some

λ0 = R \
{
0,

1
2
,

2
3
, . . . ,

n − 2
n − 1

, 1
}
,

and let the algebraic equation (4.62) have no roots with zero real part. Let us show
that, in this case, (4.59) has Pω(T, λ0) solutions that admit asymptotic representa-
tions (4.65) and (4.66). By applying the transformation

F(y(t)) = q(t)(1 + v1(τ)),
y(k)(t)

y(k−1)(t)
=

Ak

(λ0 − 1)tω
(1 + vk+1(τ)), (4.71)

k = 1, . . . ,n − 1, to equation (4.59), where

τ = β ln |tω|, β =

1 for ω = ∞

−1 for ω < ∞,
q(t) = δ(λ0 − 1)n−1

n−1∏
i=2

1
Ai

J(t),

we obtain the system of differential equations

v′1 = β

(
tωJ′(t)

J(t)
(1 + v1) +

A1

λ0 − 1
·

Y(t, v1)
F(Y(t, v1))q(t)

(1 + v2)
)
,

v′k = β
(
1 + vk +

Ak

λ0 − 1
(1 + vk)(1 + vk+1) −

Ak−1

λ0 − 1
(1 + vk)2

)
,

v′n = β

1 + vn −
An−1

λ0 − 1
(1 + vn)2 +

p(t)tn
ω

A1J(t)
·

q(t)F(Y(t, v1))

Y(t, v1)
∏n−1

k=2 (1 + vk)

 ,
(4.72)

k = 2, . . . ,n − 1, where t = t(τ) is the inverse function of τ = β ln |tω| and

Y(t, v1) = G−1(q(t)(1 + v1)).

By virtue of conditions (4.63) and (4.64), limt→ω q(t) = Z, and there exists a number
t0 ∈ [a, ω) such that q(t)(1 + v1) ∈ ∆Z(c) for t ∈ [t0, ω) and |v1| ≤ 1/2. Therefore,
Y(t, v1) ∈ ∆T(b) for t ∈ [t0, ω) and, by virtue of (4.68),

lim
t→ω

Y(t, v1) = T uniformly with respect to v1 ∈ [−1/2, 1/2].

This, together with (4.69), implies that

lim
t→ω

Y(t, v1)
F(Y(t, v1))G(Y(t, v1))

= 1 − α

uniformly with respect to v1 ∈ [−1/2, 1/2], i.e.,

Y(t, v1)
F(Y(t, v1))

= [1 − α + R1(t, v1)]G(Y(t, v1))
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and
F(Y(t, v1))

Y(t, v1)
=

1/(1 − α) + R2(t, v1)
F(Y(t, v1))

,

where the functions Ri, i = 1, 2, satisfy the conditions

lim
t→ω

Ri(t, v1) = 0, i = 1, 2, (4.73)

uniformly with respect to v1 ∈ [−1/2, 1/2]. Therefore, by virtue of the form of the
function Y(t, v1), we have the representations

Y(t, v1)
F(Y(t, v1))

= [1 − α + R1(t, v1)]q(t)(1 + v1),

F(Y(t, v1))
Y(t, v1)

=
1/(1 − α) + R2(t, v1)

q(t)(1 + v1)
.

(4.74)

By taking into account these representations and by setting

h(t) =
(λ0 − 1)tωJ′(t)
A1(1 − α)J(t)

,

we rewrite system (4.72) in the form

v′1 =
β

λ0 − 1
[ f1(τ, v1, v2) + A1(1 − α)v2 + V1(v1, v2)],

v′k =
β

λ0 − 1
[−Ak−1vk + A0vk+1 + Vk(vk, vk+1)], k = 2, . . . ,n − 1,

v′n =
β

λ0 − 1

 f2(τ, v1, . . . , vn−1) −
n−1∑
i=1

vi − (λ0 + 1)vn + Vn(τ, v1, . . . , vn)

 ,
(4.75)

where

f1(τ, v1, v2) = A1[R1(t, v1)(1 + v2) + (1 − α) − (1 − α)h(t)](1 + v1),
V1(v1, v2) = A1(1 − σ)v1v2,

Vk(vk, vk+1) = Akvkvk+1 − Ak−1v2
k , k = 2, . . . ,n − 1,

f2(τ, v1, . . . , vn−1) = (1 − α)h(t)R2(t, v1)
n−1∏
k=1

1
1 + vk

+ (h(t) − 1)

1 −
n−1∑
k=1

vk

 ,
Vn(τ, v1, . . . , vn) = −An−1v2

n + h(t)

n−1∏
k=1

1
1 + vk

− 1 +

n−1∑
k=1

vk


Consider the resulting system on the set [τ0,∞) × Rn

1/2, where τ0 = β ln |tω| and
Rn

1/2 = {(v1, . . . , vn) ∈ Rn : |vk| ≤ 1/2, k = 1, . . . ,n}. Since τ′(t) = β/tω > 0 for
t ∈ [t0, ω), limt→ω τ(t) = ∞, and t = t(τ) is the inverse function of τ : [t0, ω) →
[τ0,∞), it follows that the right-hand sides of the system are continuous on the set
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[τ0,∞)×Rn
1/2, and, by virtue of the conditions of the theorem, limτ→∞ f1(τ, v1, v2) =

0 uniformly with respect to (v1, v2) ∈ R2
1/2, limτ→∞ f2(τ, v1, . . . , vn−1) = 0 uniformly

with respect to (v1, . . . , vn−1) ∈ Rn−1
1/2 ,

lim
|vk |+|vk+1|→0

Vk(vk, vk+1)
|vk| + |vk+1|

= 0

k = 1, . . . ,n − 1,

lim
|v1|+···+|vn|→0

Vn(τ, v1, . . . , vn)
|v1| + · · · + |vn|

= 0

uniformly with respect to τ ∈ [τ0,∞). In addition, by writing out the characteristic
equation det(C − %E) = 0 of the matrix C consisting of the coefficients v1, . . . , vn in
square brackets in system (4.75), that is, the matrix

C =


0 A1(1 − α) 0 · · · 0 0
0 −A1 A2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −An−2 An−1
−1 −1 −1 · · · −1 −(λ0 + 1)


,

we obtain the algebraic equation (4.62), which, by the assumptions of the theorem,
has no roots with zero real part. We have thereby shown that system (4.75) satisfies
all assumptions of [35, Theorem 2.2]. By this theorem, system (4.75) has at least one
solution (v1, . . . , vn) : [τ1,∞)→ Rn, τ1 ≥ τ0, that tends to zero as τ→∞. Moreover,
there exists an m-parameter family of such solutions if, among the roots of algebraic
equation (4.62), there are m roots whose signs coincide with that of β(1 − λ0). By
virtue of the changes of variables (4.71) and conditions (4.69) and (4.63), to each
such solution of system (4.75), there corresponds a solution of differential equation
(4.59) admitting asymptotic representations (4.65) and (4.66). One can readily see
that this solution is a Pω(T, λ0) solution of (4.59). Since β = sgn tω, it follows that
equation (4.59) has an m-parameter family of such solutions if, among the roots of
(4.62), there are m roots whose sign coincide with that of the function (1 − λ0)tω in
a left neighborhood of ω. �

Remark 4.5. (i) Algebraic equation (4.62) necessarily has no solutions with zero
real part if |α| < 1.

(ii) Assume that F satisfies the condition

LF(zg(z)) = LF(z)[1 + o(1)] as z→ T (z ∈ ∆T) (4.76)

for every continuously differentiable function g : ∆T → (0,∞) with the property

lim
z→T, z∈∆T

zg′(z)
g(z)

= 0.
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Compare (4.76) with (4.23), (4.95), and (4.96). If y : [t0, ω) → ∆T is a continuously
differentiable function such that

lim
t→ω

y(t) = T,
y′(t)
y(t)

=
ξ′(t)
ξ(t)

[ϑ + o(1)] as t→ ω,

where ϑ is a nonzero real constant and ξ is a real function differentiable in some
left neighborhood of ω and such that ξ′(t) , 0, then

LF(y(t)) = LF(µ0|ξ(t)|ϑ)[1 + o(1)]

as t→ ω, since y(t) = z(t)g(z(t)), where z(t) = µ0|ξ(t)|ϑ, and

lim
z→T, z∈∆T

zg′(z)
g(z)

= lim
t→ω

z(t)g′(z(t))
g(z(t))

= lim
t→ω

z(t)(y(t)/z(t))′

(y(t)/z(t))z′(t)

= lim
t→ω

(
ξ(t)y′(t)
ϑξ′(t)y(t)

− 1
)

= 0.

By virtue of representations (4.66), a Pω(T, λ0) solution of (4.59) is a function
regularly varying (at ω) of index ϑ = A1/(λ0 − 1). Therefore, if in Theorem 4.13 we
additionally assume that F satisfies (4.76), then the above observations, together
with (4.65), imply the asymptotic representation

y(t) = µ0

∣∣∣∣∣∣∣[(λ0 − 1)tω]np(t)
n−1∏
i=1

1
Ai

LF

(
µ0|tω|

A1
λ0−1

)∣∣∣∣∣∣∣
1

1−α

(1 + o(1))

as t → ω. Therefore, in this case, the asymptotic formulas for Pω(T, λ0) solutions
and their derivatives of order less than or equal to n−1 can be written out in closed
form.

(iii) Note that Evtukhov et al. in their previous papers related to the topic of
this chapter (some of them are mentioned above), additionally assumed that F is
a twice continuously differentiable function on the interval ∆T and

lim
u→T,u∈∆T

uF′′(u)
F′(u)

= α − 1.

However, in the result which we describe here, the approach was improved in
such a way that this condition can be omitted.

(iv) The paper [36] also deals with other types of solutions; in particular con-
ditions guaranteeing the existence in the classes Pω(T, ζ), where ζ = ±∞ or ζ = 1
or ζ = (n − 2)/(n − 1) or ζ = (n − i − 1)/(n − i) with i = 2, 3, . . . ,n − 1 or ζ = 0, are
established.

(v) In the paper [89] by Kusano and Manojlović, comments and comparisons
of the results with ones in [36] are presented; note that a summary of the results
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from [89] is given in the previous section and concerns equation (4.58) which is a
special case of (4.59). The observations which we present next, are based on those
comments and somehow adapted. Although not specifically emphasized in [36]
— with some exceptions — Evtukhov and Samoilenko restricted their attention
on the equation with RV coefficient and focused their attention only on its RV
solutions. Namely, conditions imposed in [36] on the function p in (4.59) mean,
due to converse half of Karamata’s theorem, that p is of regular variation. That
fact is neither mentioned nor used by Evtukhov and Samoilenko. Moreover, while
they clearly emphasized that P∞(T, λ0) solutions with

λ0 = R \
{
0,

1
2
,

2
3
, . . . ,

n − 2
n − 1

, 1
}
,

and λ0 = ∞ are functions of regular variation (cf. (ii) of this remark), such an
assertion forP∞(T, (n−i−1)/(n−i)) solutions with i ∈ {1, 2, . . . ,n−1} is missing. Also,
by virtue of representations of such solutions obtained in [36] such a conclusion
is almost impossible to make. But, using the fact that p is of regular variation, it
becomes quite clear that eachP∞(T, λ0) solution, with λ0 , 1, is regularly varying,
while assuming that p is of rapid variation, P∞(T, 1) solutions are rapidly varying.
Moreover, the converse is also true, due to the fact that p ∈ RV(σ). Indeed, denote
with P(T, λ0) the set of all P∞(T, λ0) solutions of (4.58). Then, assuming that
y ∈ RV(ϑ), from equation (4.58) we may conclude y(n)

∈ RV(σ + ϑγ), which by
application of the Karamata integration theorem implies that

y(n−1)
∈ RV(σ + ϑγ + 1) ⇒ lim

t→∞
t

y(n)(t)
y(n−1)(t)

= σ + ϑγ + 1

y(n−2)
∈ RV(σ + ϑγ + 2) ⇒ lim

t→∞
t
y(n−1)(t)
y(n−2)(t)

= σ + ϑγ + 2.

Therefore, condition (4.61) in the definition of P∞(T, λ0) solutions becomes

σ + ϑγ + 2
σ + ϑγ + 1

= lim
t→∞

t y(n−1)(t)
y(n−2)(t)

t y(n)(t)
y(n−1)(t)

= lim
t→∞

[y(n−1)(t)]2

y(n)y(n−2)(t)
,

so that

y ∈ P
(
T,
σ + ϑγ + 2
σ + ϑγ + 1

)
, i.e., RS(ϑ) ⊆ P

(
T,
σ + ϑγ + 2
σ + ϑγ + 1

)
,

where RS(ϑ) = RS ∩ RV(ϑ), RS being the set of all RV solutions of (4.58). More
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specifically, it is not difficult to see that, in fact

RS(ϑ) =P
(
T,

2n − 1 − ϑ
2n − ϑ

)
,

for ϑ ∈ (−∞, 2n) \ {0, 1, . . . , 2n − 1}, T =

0 if ϑ < 0
∞ if ϑ > 0

,

RS(0) =P
(
0,

2n − 1
2n

)
,

RS(k) =P

(
∞,

2n + 1 − k
2n − k

)
for k = {1, 2, . . . , 2n − 1},

RS(2n) =P(∞,∞),

which makes the results from the previous subsection closely connected with the
ones in this section and in [36].

4.3.8 Strongly monotone solutions of n-th order nonlinear systems

This subsection is based on the paper [124] by Matucci, Řehák and on the paper
[146] by Řehák. Consider the nonlinear differential system

x′1 = δa1(t)F1(x2),
x′2 = δa2(t)F2(x3),

...

x′n−1 = δan−1(t)Fn−1(xn),
x′n = δan(t)Fn(x1),

(4.77)

n ∈ N, n ≥ 2, where Fi, i = 1, . . . ,n, are continuous functions defined on R with
uFi(u) > 0 for u , 0, ai, i = 1, . . . ,n, are positive continuous functions defined on
[T,∞), T ≥ 0, and δ ∈ {−1, 1}.

We assume
ai ∈ RV(σi), σi ∈ R, i = 1, . . . ,n, (4.78)

and
Fi(| · |) ∈ RV(αi), αi ∈ (0,∞), i = 1, . . . ,n, (4.79)

when studying the asymptotics of strongly increasing solutions, or (4.78) and

Fi(| · |) ∈ RV0(αi), αi ∈ (0,∞), i = 1, . . . ,n. (4.80)

when the asymptotics of strongly decreasing solutions is considered. Further, in
both cases we assume that the indices α1, · · · , αn satisfy

α1 · · ·αn < 1. (4.81)
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Recall that system (4.77) satisfying condition (4.81) is called subhomogeneous (an
alternative terminology is sub-half-linear). The opposite (strict) inequality is called
superhomogeneity (or super-half-linearity).

The aim is to study asymptotic behavior of positive solutions to system (4.77),
i.e., solutions having all their components eventually positive. With δ = 1, positive
solutions are eventually increasing, while with δ = −1, positive solutions are
eventually decreasing. If one of the components in either case tends to a nonzero
real constant as the independent variable tends to infinity, then the asymptotic
behavior is clear from a certain point of view; asymptotic formulas can be easily
derived from the integral form of system (4.77). Therefore, we are interested in
the extreme cases where all the solution components tend to infinity or tend to
zero. Among other, we establish conditions guaranteeing that all solutions in these
classes are regularly varying and satisfy certain asymptotic formula.

Let S denote the set of all solutions of (4.77) which are defined in a neigh-
borhood of infinity and do not eventually vanish — the so-called proper solutions
— and whose components are eventually positive. Due to the sign conditions
on the coefficients and on the nonlinearities in (4.77), it is easy to see that if one
component of a solution of (4.77) is eventually of one sign, then all its components
are eventually of one sign; we speak about nonoscillatory solutions. Further, any
nonoscillatory solution of (4.77) has necessarily all components eventually mono-
tone. Denote by DS ⊆ S the subset of the solutions of (4.77) which are in S, and
whose components are eventually decreasing; similarly, we denote by IS ⊆ S the
subset of the solutions of (4.77) which are in S, and whose components are even-
tually increasing. We will study the set DS under the condition δ = −1, and the
set IS under the condition δ = 1; later we explain why this setting is natural and
nonrestrictive. First note that if δ = −1, thenDS = S, and if δ = 1, then IS = S. It
is clear thatDS contains only those solutions whose components all tend to zero
or at least one component tends to a positive constant and the other ones to zero
(as t→∞), while IS contains only those solutions whose components tend all to
infinity or at least one component tends to a positive constant and the other ones
to infinity (as t→∞). Hence we denote

SDS =
{
(x1, . . . , xn) ∈ DS : lim

t→∞
xi(t) = 0, i = 1, . . . ,n

}
,

which are the so-called strongly decreasing solutions, and

SIS =
{
(x1, . . . , xn) ∈ IS : lim

t→∞
xi(t) = ∞, i = 1, . . . ,n

}
,

which are the so-called strongly increasing solutions.
The condition δ = 1 resp. δ = −1 is somehow natural when studying the classes

IS resp. DS. In order to justify this assertion, we recall a standard classification of
nonoscillatory solutions. At the same time, thereby we put the presented results
into a broader context. Naito in [128, 129] considers the n-th order differential
equation

D(γn)D(γn−1) · · ·D(γ1)x + δ̃p(t)Φβ(x) = 0, (4.82)
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where n ≥ 2, γ1, . . . , γn, β ∈ (0,∞), δ̃ = 1 or δ̃ = −1, p(t) > 0, and D(γ)x = d
dt (Φγ(x)).

Equation (4.82) is a special case of system (4.77). Indeed, if Fi = Φαi , i = 1, . . . ,n,
then (4.77) can be equivalently written as

D
a
−

1
αn−1

n−1

( 1
αn−1

)
· · ·D

a
−

1
α1

1

( 1
α1

)
D1 (1) x1 = δnan(t)Φαn(x1), (4.83)

where D f (γ)x = d
dt ( f (t)Φγ(x)). Using the substitution x1(t) = Φγ1(x(t)) and notic-

ing that D1(1)(Φγ1(x)) = D(γ1)x, equation (4.83) reduces to (4.82) choosing αi =
1/γi+1, i = 1, . . . ,n− 1, αn = β/γ1, ai(t) ≡ 1, i = 1, . . . ,n− 1, an(t) = p(t), and δ̃ = −δn.
Naito made a basic classification of positive solutions to (4.82) extending well
known results by Kiguradze and Chanturia [79] for the quasilinear equation

x(n) + δ̃p(t)Φβ(x) = 0. (4.84)

Notice that (4.82) reduces to (4.84) when γ1 = · · · = γn = 1. The classification
of solutions x to (4.82) in Naito [128] is made according to the eventual signs of
D(γ j) · · ·D(γ1)x(t), j = 0, . . . ,n−1 (with the operator being the identity when j = 0).
For solutions x of (4.82), the so-called Kiguradze class of degree k is denoted by Kk
and defined asD(γ j) · · ·D(γ1)x(t) > 0 for j = 0, 1, . . . , k − 1,

(−1) j−kD(γ j) · · ·D(γ1)x(t) > 0 for j = k, . . . ,n − 1
(4.85)

for t large, where for k = 0 (resp. k = n), the first line (resp. the second line) in
(4.85) is omitted. It is not difficult to see that

x ∈ K0 ⇐⇒ (x1, . . . , xn) ∈ DS and x ∈ Kn ⇐⇒ (x1, . . . , xn) ∈ IS, (4.86)

where x1 = Φγ1(x), xi = δΦγi(x
′

i−1), i = 2, . . . ,n. If we denote the set of all eventually
positive solutions of (4.82) byK , then [128, Theorem 1.1] implies that

K = K1 ∪K3 ∪ · · · ∪ Kn−1 for δ̃ = 1 and n even;
K = K0 ∪K2 ∪ · · · ∪ Kn−1 for δ̃ = 1 and n odd;
K = K0 ∪K2 ∪ · · · ∪ Kn−2 ∪Kn for δ̃ = −1 and n even;
K = K1 ∪K3 ∪ · · · ∪ Kn−2 ∪Kn for δ̃ = −1 and n odd.

(4.87)

In view of (4.86) and the equality δnan(t) = −δ̃p(t), the relations in (4.87) says that
the condition δ = −1 and δ = 1 are quite natural and nonrestrictive when studying,
respectively, positive decreasing and positive increasing solutions of (4.77).

The subscripts that indicate the components are always to be intended modulo
n and not bigger than n, that is

uk =

uk if 1 ≤ k ≤ n,
uk−mn if k > n,

(4.88)
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where m ∈ N is such that 1 ≤ k − mn ≤ n. With this convention, which is used
throughout the paper, system (4.77) takes the form

x′i = δai(t)Fi(xi+1), i = 1, . . . ,n.

As usual, the slowly varying component in the representation of f ∈ RV(ϑ)
will be denoted by L f , i.e., L f (t) = f (t)/tϑ; similarly for f ∈ RV0(ϑ).

For sake of simplicity, we introduce here some constants that repeatedly appear
in what follows. We set

Ai, j =

j−1∏
k=i

αk, for 1 ≤ i ≤ j ≤ i + n ≤ 2n.

It is easy to check that Ai,n+i = α1 · · ·αn and Ai,i = 1 for all i = 1, . . . ,n. We emphasize
that the convention (4.88) is used only for simple subscripts and not for double
ones. We indicate by (ν1, . . . , νn) the unique solution of the linear system

νi − αiνi+1 = σi + 1, i = 1, . . . ,n, (4.89)

where σ1, . . . , σn are given real numbers. Notice that the associated matrix is
nonsingular thanks to the subhomogeneity condition. Further, let (h1, . . . , hn) be
the unique solution of

|νi|hi = hαi
i+1, i = 1, . . . ,n. (4.90)

Notice that the subhomogeneity condition plays a key role in its unique solvability
again. A simple calculation shows that

νi =
1

1 − Ai,n+i

n−1∑
k=0

(σi+k + 1)Ai,i+k, i = 1, . . . ,n, (4.91)

and

hi =

n−1∏
k=0

|νi+k|
−Ai,i+k


1

1−Ai,n+i

, i = 1, . . . ,n.

If we set

Li(t) =

n−1∏
j=0

(
Lai+ j(t)LFi+ j(t

νi+ j+1)
)Ai,i+ j


1

1−Ai,n+i

, i = 1, . . . ,n, (4.92)

then (L1, . . . ,Ln)(t) is the unique solution (up to asymptotic equivalence) to the
system of the relations

Li(t) ∼ Lai(t)L
αi
i+1(t)LFi (tνi+1) as t→∞, i = 1, . . . ,n. (4.93)

Observe that if LF1 ≡ · · · ≡ LFn ≡ 1, then (L1, . . . ,Ln)(t) reduces to the unique
solution of the system

Li(t) = Lai(t)L
αi
i+1(t), (4.94)
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i = 1, . . . ,n.
In what follows, we assume an additional condition for the slowly varying

components of the nonlinearities Fi. In particular, if Fi, i = 1, . . . ,n, satisfies (4.80),
we assume

LFi(ug(u)) ∼ LFi(u) as u→ 0+, i = 1, . . . ,n, (4.95)

for every g ∈ SV0, while if Fi, i = 1, . . . ,n, satisfies (4.79), we assume

LFi(ug(u)) ∼ LFi(u) as u→∞, i = 1, . . . ,n, (4.96)

for every g ∈ SV. Compare conditions (4.95) and (4.96) with (4.23) and (4.76).
Now we are ready to present the main results. The first theorem gives sufficient

conditions under which system (4.77) possesses a SDS or SIS solution which is
regularly varying and we provide an exact asymptotic formula. We point out that
Fi does not need to be monotone.

Theorem 4.14. Let (4.78) hold.
(i) Assume δ = −1, (4.80) and (4.95). If νi < 0, i = 1, . . . ,n, then there exists

(x1, . . . , xn) ∈ SDS ∩ (RV(ν1) × · · · × RV(νn))

and
xi(t) ∼ hitνiLi(t) as t→∞, i=1,. . . ,n. (4.97)

(ii) Assume δ = 1, (4.79) and (4.96) If νi > 0, i = 1, . . . ,n, then there exists

(x1, . . . , xn) ∈ SIS ∩ (RV(ν1) × · · · × RV(νn))

and (4.97) holds.

The proof of the above theorem will be given later. As a corollary, we get
sufficient conditions for SDS , ∅ and SIS , ∅.

In the second result, strengthening the assumptions on the nonlinearities Fi,
we can show that

all SDS and SIS solutions are regularly varying.

Theorem 4.15. Let (4.78) hold and Fi = Φαi with αi > 0, i = 1, . . . ,n.
(i) If δ = −1 and νi < 0, i = 1, . . . ,n, thenSDS , ∅ and for every (x1, . . . , xn) ∈ SDS,

it holds (x1, . . . , xn) ∈ RV(ν1) × · · · × RV(νn). Further, (4.97) holds with LF1 ≡ · · · ≡

LFn ≡ 1.
(ii) If δ = 1 and νi > 0, i = 1, . . . ,n, then SIS , ∅ and for every (x1, . . . , xn) ∈ SIS,

it holds (x1, . . . , xn) ∈ RV(ν1) × · · · × RV(νn). Further, (4.97) holds with LF1 ≡ · · · ≡

LFn ≡ 1.

An alternative expression of sufficient conditions in Theorem 4.14 and Theo-
rem 4.15 can be found in subsequent Lemma 4.8.

In order to prove Theorem 4.14 and Theorem 4.15, we need some technical
lemmas. The first two lemmas analyze conditions (4.95), (4.96) and show how
they lead to the unique solvability (up to asymptotic equivalence) in the class SV
of relation (4.93).
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Lemma 4.3. If (4.95) holds, then

LFi(t
νh(t)) ∼ LFi(t

ν) (4.98)

as t → ∞ for any ν < 0 and h ∈ SV. Analogously, condition (4.96) implies that (4.98)
holds as t→∞ for any ν > 0 and h ∈ SV.

Proof. Taking the substitution u = tν, relation (4.98) is transformed into

LFi(uh(u−ν)) ∼ LFi(u), u→ 0 + . (4.99)

Since g(u) := h(u−ν) ∈ RV0(0) = SV0, condition (4.95) implies that (4.99) holds.
Similarly we can show that (4.96) implies (4.98) for any ν > 0.

�

Lemma 4.4. Let νi < 0 for i = 1, . . . ,n. Then the system of asymptotic relations (4.93)
has a unique solution (up to asymptotic equivalence) belonging to the set SV0, and this
solution is given by (4.92). Further, the system of asymptotic relations

L̃i(t) ∼
1
|νi|

Lai(t)L̃
αi
i+1(t)LFi (tνi+1) as t→∞, i = 1, . . . ,n, (4.100)

has the unique solution (up to asymptotic equivalence)

L̃i(t) = hiLi(t),

where hi satisfies (4.90), for all i = 1, . . . ,n. Analogous statements hold under the
assumption νi > 0, i = 1, . . . ,n.

Proof. The first statement follows from the fact that system (4.93) can be written as

Li(t) ∼ Lai(t)LFi(t
νi+1)

(
Lai+1(t)LFi+1(tνi+2)Lαi+1

i+2 (t)
)αi
∼ · · · ∼

∼

n−1∏
j=0

(
Lai+ j(t)LFi+ j(t

νi+ j+1)
)Ai,i+ j

LAi,i+n
i+n (t)

as t → ∞, i = 1, . . . ,n, and taking into account that Li+n(t) = Li(t). The second
statement is immediate from the definition of hi, i = 1, . . . ,n. Indeed it results

L̃i(t) ∼
hαi

i+1

|νi|
Lai(t)L

αi
i+1(t)LFi(t

νi+1) =
1
|νi|

Lai(t)L̃
αi
i+1(t)LFi(t

νi+1)

. �

The following lemma provides some properties of the constants νi, i = 1, . . . ,n
defined by (4.89).
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Lemma 4.5. Let (p1, . . . , pn) be the unique solution of the systemp1 + · · · + pn = 1,
αipi + pi+2 = pi+1(αi+1 + 1), i = 1, 2, . . . ,n − 2,n.

(4.101)

Then

pi =
1 +

∑n+i−1
k=i+1 Ak,n+i

n +
∑n

k=1(Ak,k+1 + Ak,k+2 + · · · + Ak,k+n−1)
> 0, i = 1, . . . ,n, (4.102)

and the following identity holds

ν1 + · · · + νn =
(σ1p1 + · · · + σnpn + 1)

1 − ξ
, (4.103)

where ξ is defined by p1 + · · · + pn−2 + pn−1(αn−1 + 1) and satisfies ξ < 1. Further, if
LF1 ≡ · · · ≡ LFn ≡ 1, then

L1(t) · · · Ln(t) =
(
Lp1

a1
(t) · · · Lpn

an
(t)

) 1
1−ξ (4.104)

Proof. It is easy to check that (p1, . . . , pn) given by (4.102) solves (4.101). Positivity of
pi is clear and the uniqueness can readily be seen when writing (4.101) in a matrix
form. The inequality ξ < 1 is equivalent to the subhomogeneity assumption. A
series of routine and tedious computations (where we can expand the explicit
expressions for νi and pi, and compare corresponding summands in the resulting
formulas) shows that identities (4.103) and (4.104) hold. �

Define

Bi, j =

Ai, j for 1 ≤ i < j ≤ n,∏ j−1+n
k=i αk for 1 ≤ j ≤ i ≤ j + n − 1 ≤ 2n − 1.

It is easy to verify that the following relations hold

Bi,i = α1 · · ·αn,

Bi, jB j,i = α1 · · ·αn = Bi,i,

Bi, jB j,` = Bi,`,

where i, j, ` ∈ {1, . . . ,n}, and for the last equality we assume i < j < ` or ` < i < j or
j < ` < i. Now let

%i, j = νi − Bi, jν j, i, j ∈ 1, . . . ,n. (4.105)

In the subsequent lemmas we derive several properties of the constants %i, j, i, j ∈
1, . . . ,n. Their proofs are rather technical and since they do not directly concern
regular variation we omit them. For details see [124].

Lemma 4.6. Let νi < 0 for i = 1, . . . ,n. Then %i, j, i, j ∈ 1, . . . ,n, satisfy the following
relations:
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(i) %i,i < 0 for i = 1, . . . ,n.
(ii) If there exist i, j ∈ {1, . . . ,n}, i , j, such that %i, j ≥ 0, then % j,i < 0.

(iii) If there exist i, j, ` ∈ {1, . . . ,n}, with i < j < `, such that %i, j < 0 and % j,` ≤ 0, then
%i,` < 0.

(iv) If there exist i, j, ` ∈ {1, . . . ,n}, with j < i < `, such that %i, j < 0 and %`, j ≥ 0, then
%i,` < 0.

Lemma 4.7. Let γi, j, i, j = 1, . . . ,n, n ≥ 2, be any numbers which obey the rules (i)-(iv) in
Lemma 4.6. Then the matrix (γi, j)1≤i, j≤n has at least one row whose elements are negative.

The previous two lemmas play an important role in the proof of the following
statement which, among other, enables us to find an alternative expression for
sufficient conditions in Theorem 4.14 and Theorem 4.15.

Lemma 4.8. The following equivalence holds: νi < 0 (> 0) for all i = 1, . . . ,n if and only
if %i,m < 0 (> 0) for all i = 1, . . . ,n and some m ∈ {1, . . . ,n}.

Lemma 4.9. The numbers %i, j, i, j = 1, . . . ,n, defined by (4.105), satisfy the relations% j+k−1, j = σ j+k−1 + 1 + α j+k−1% j+k, j, k = 1, . . . ,n − 1,
% j+n−1, j = σ j+n−1 + 1,

(4.106)

j = 1, . . . ,n.

Now we are ready to prove the main theorems.

Proof of Theorem 4.14. (i) First we prove that (4.77) has at least one solution x =
(x1, . . . , xn) ∈ SDS. Since (4.80) is valid, for every i = 1, . . . ,n there exists F̃i ∈

C(R) ∩RV0(αi), nondecreasing, such that F̃i(u) ∼ Fi(u) as u→ 0. Thus there exists
u0 > 0 such that

1
4√2

F̃i(u) ≤ Fi(u) ≤
4√

2 F̃i(u), ∀u ∈ [0,u0], i = 1, . . . ,n. (4.107)

Notice that F̃i satisfies conditions (4.92) and (4.94) if Fi does, for i = 1, . . . ,n. Let
(k1, . . . , kn), be the unique solution of the linear system ki−αiki+1 = 1. System (4.89)
reduces to this if σi = 0 for all i = 1, · · · ,n, and therefore, from (4.91), it results
ki > 0 for all i. Let L̃i(t) = hiLi(t), i = 1, . . . ,n, see Lemma 4.4. Now, taking into
account that νi < 0, i = 1, . . . ,n, properties of RV functions, assumptions (4.98)
and (4.100) imply that t0 sufficiently large exists such that

2ki L̃i(t)tνi ≤ u0, (4.108)

LF̃i
(2ki+1 L̃i+1(t)tνi+1) ≤

4√

2 LF̃i
(tνi+1), (4.109)

LF̃i
(2−ki+1 L̃i+1(t)tνi+1) ≥

1
4√2

LF̃i
(tνi+1) (4.110)

1
4√2

L̃i(t) ≤
1
|νi|

Lai(t)L̃
αi
i+1(t)LF̃i

(tνi+1) ≤
4√

2 L̃i(t), (4.111)

1
4√2

tνi L̃i(t) ≤ |νi|

∫
∞

t
sνi−1L̃i(s) ds ≤

4√

2 tνi L̃i(t), (4.112)
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for all t ∈ [t0,∞), and i = 1, . . . ,n. Let Ω ⊂ (C[t0,∞))n be the set

Ω = {(x1, . . . , xn) : xi ∈ C[t0,∞),

2−ki L̃i(t)tνi ≤ xi(t) ≤ 2ki L̃i(t)tνi , i = 1, . . . ,n}, (4.113)

and let T : Ω→ (C[t0,∞))n be the operator defined by

Tx = (T1x2,T2x3, . . . ,Tnx1),

with

(Tixi+1)(t) =

∫
∞

t
ai(s)Fi(xi+1(s)) ds, i = 1, . . . ,n.

First of all notice that T is well defined in Ω. Indeed, for all x ∈ Ω we have

0 ≤ ai(t)Fi(xi+1(t)) ≤
4√

2 ai(s)F̃i(xi+1(t)) ≤
4√

2 ai(s)F̃i(2ki+1 L̃i+1(t)tνi+1),

where we used (4.108) and (4.107). Since F̃i ∈ RV0(αi) and ai ∈ RV(σi), the last
term in the above inequality belongs to the class RV(σi + αiνi+1) = RV(νi − 1), see
(4.89), with νi < 0, and therefore it is integrable on [t0,∞). In particular, taking into
account (4.109), (4.111), and (4.112), for every t ≥ t0 it holds

(Tixi+1)(t) ≤
4√

2
∫
∞

t
ai(s)F̃i(2ki+1 L̃i+1(s)sνi+1) ds

= 2αiki+1+ 1
4

∫
∞

t
sσiLai(s)L̃αi

i+1(s)sαiνi+1LF̃i
(2ki+1 L̃i+1(s)sνi+1) ds

= 2ki−
3
4

∫
∞

t
sνi−1Lai(s)L̃αi

i+1(s)LF̃i
(2ki+1 L̃i+1(s)sνi+1) ds

≤ 2ki−
1
2

∫
∞

t
sνi−1Lai(s)L̃αi

i+1(s)LF̃i
(sνi+1) ds

≤ 2ki−
1
4 |νi|

∫
∞

t
sνi−1L̃i(s) ds ≤ 2kitνi L̃i(t).

Analogously, from (4.110), (4.111), and (4.112), for every t ≥ t0 it holds

(Tixi+1)(t) ≥ 2−
1
4

∫
∞

t
ai(s)F̃i(2−ki+1 L̃i+1(s)sνi+1) ds

= 2−ki+
3
4

∫
∞

t
sνi−1Lai(s)L̃αi

i+1(s)LF̃i
(2−ki+1 L̃i+1(s)sνi+1) ds

≥ 2−ki+
1
2

∫
∞

t
sνi−1Lai(s)L̃αi

i+1(s)LF̃i
(sνi+1) ds

≥ 2−ki+
1
4 |νi|

∫
∞

t
sνi−1L̃i(s) ds ≥ 2−kitνi L̃i(t).
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Thus T maps Ω into itself. In order to apply the Schauder-Tychonoff fixed point
theorem, we have to show that T is completely continuous. Since T(Ω) ⊆ Ω,
functions in T(Ω) are equibounded on [t0,∞); further, the inequality

0 ≥ (Tixi+1)′(t) ≥ −
4√

2 ai(t)F̃i(2ki+1 L̃i+1(t)tνi+1)

which is valid for t ≥ t0, i = 1, . . . ,n, and for every (x1, . . . , xn) ∈ Ω, ensure that
functions in T(Ω) are equicontinuous. The relative compactness of T(Ω) follows
from the Ascoli-Arzelà theorem. To prove the continuity of T we have to show that
for any sequence xm = (xm

1 , . . . , x
m
n ) in Ω which converges to x̄ = (x̄1, . . . , x̄n) ∈ Ω as

m → ∞ uniformly on any compact subset of [t0,∞), it holds (Txm)(t) → (Tx̄)(t) as
m→∞ uniformly on compact subset of [t0,∞). But this is a direct consequence of
the Lebesgue dominated convergence theorem. Since all the assumptions of the
Schauder-Tychonoff fixed point theorem are fulfilled, we obtain the existence of
at least one fixed point x ∈ Ω of the operator T. This fixed point x = (x1, . . . , xn)
is a positive solution of (4.77), and from the definition of the set Ω it follows that
xi(t)→ 0 as t→∞, i = 1, . . . ,n, i.e., x ∈ SDS.

Now we prove that xi ∈ RV(νi), i = 1, . . . ,n. Since x ∈ Ω, we have xi(t) � tνi L̃i(t)
as t→∞, i = 1, . . . ,n. Taking into account that L̃i(λt)/L̃i(t)→ 1 as t→∞ for every
λ > 0, i = 1, . . . ,n, we can find mi,Mi ∈ (0,∞), i = 1, . . . ,n, such that

mi ≤ τi(t) ≤Mi, where τi(t) :=
xi(λt)
xi(t)

, i = 1, . . . ,n, (4.114)

for t ≥ t0, and so

lim inf
t→∞

τi(t) =: Λi ∈ (0,∞), lim sup
t→∞

τi(t) =: Λi ∈ (0,∞).

From the uniform convergence theorem for SV0 functions, we get

∣∣∣∣∣LFi(xi+1(λt))
LFi(xi+1(t))

− 1
∣∣∣∣∣ =

∣∣∣∣∣LFi(τi+1(t)xi+1(t))
LFi(xi+1(t))

− 1
∣∣∣∣∣

≤ sup
ξ∈[mi,Mi]

∣∣∣∣∣LFi(ξxi+1(t))
LFi(xi+1(t))

− 1
∣∣∣∣∣ = o(1)
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as t→∞. Thus,

Λi ≥ lim inf
t→∞

λx′i (λt)
x′i (t)

= lim inf
t→∞

λai(λt)xαi
i+1(λt)

ai(t)x
αi
i+1(t)

·
LFi(xi+1(λt))
LFi(xi+1(t))

≥ λ1+σi

(
lim inf

t→∞

xi+1(λt)
xi+1(t)

)αi

≥ λ1+σi

(
lim inf

t→∞

λx′i+1(λt)
x′i+1(t)

)αi

= λ1+σi

lim inf
t→∞

λai+1(λt)xαi+1
i+2 (λt)

ai+1(t)xαi+1
i+2 (t)

·
LFi+1(xi+2(λt))
LFi+1(xi+2(t))

αi

≥ λ1+σi+αi(1+σi+1)
(
lim inf

t→∞

λx′i+2(λt)
x′i+2(t)

)αiαi+1

≥ . . .

≥ λ1+σi+Ai,i+1(1+σi+1)+Ai,i+2(1+σi+2)+···+Ai,i+n−1(1+σi+n−1)
(
lim inf

t→∞
τi+n(t)

)Ai,i+n

= λνi(1−Ai,i+n)Λ
Ai,i+n
i ,

(4.115)

where we used (4.91). Realizing now that Ai,i+n = α1 · · ·αn < 1, we obtain Λi ≥ λ
νi .

Similarly we get Λi ≤ λνi . This implies that there exists the limit limt→∞ x(λt)/x(t)
and it is equal to λνi . Since λ was arbitrary, we get xi ∈ RV(νi), i = 1, . . . ,n.

Finally, we establish asymptotic formula (4.97). We have xi(t) = tνi L̄i(t), i =
1, . . . ,n, where L̄i ∈ SV has to be determined. Then, taking into account (4.89),
(4.95), and (1.8), it results

tνi L̄i(t) =

∫
∞

t
ai(s)Fi(xi+1(s)) ds =

∫
∞

t
sσiLai(s)xαi

i+1(s)LFi(xi+1(s)) ds

=

∫
∞

t
sνi−1Lai(s)L̄αi

i+1(s)LFi

(
sνi+1 L̄i+1(s)

)
ds

∼

∫
∞

t
sνi−1Lai(s)L̄αi

i+1(s)LFi (sνi+1) ds

∼
1
|νi|

tνiLai(t)L̄
αi
i+1(t)LFi (tνi+1)

as t→∞, i = 1, . . . ,n. Hence, L̄i(t) ∼ L̃i(t) = hiLi(t), i = 1, . . . ,n, see Lemma 4.4, and
(4.97) follows.

The proof of (ii) is similar and hence omitted. Just note that relation (1.9) finds
its extensive application here. �

The following lemma, which follows the well known generalized AM-GM
inequality, is needed to prove Theorem 4.15.

Lemma 4.10. Let u1, . . . ,un > 0 and p1, . . . , pn ≥ 0 with p1 + · · · + pn = 1. Then
n∑

i=1

ui ≥

n∏
i=1

upi
i . (4.116)
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Proof of Theorem 4.15. (i) Take any (x1, . . . , xn) ∈ SDS, which indeed exists by The-
orem 4.14. From (4.77), xi satisfies the integral equation

xi(t) =

∫
∞

t
ai(s)xαi

i+1(s) ds, (4.117)

i = 1, . . . ,n. From Lemma 4.8, there exists m ∈ {1, 2, . . . ,n} such that %i,m < 0 for all
i = 1, . . . ,n, where the constants %i, j are defined by (4.105) and satisfy also (4.106).
Iterating (4.117), starting from i = m we get

xm(t) =

∫
∞

t
am(s1)xαm

m+1(s1) ds1

=

∫
∞

t
am(s1)

(∫
∞

s1

am+1(s2)xαm+1
m+2 ds2

)αm

ds1

= · · · =

∫
∞

t
am(s1)

(∫
∞

s1

am+1(s2) ×

×

(
. . .

(∫
∞

sn−1

am+n−1(sn)xαm+n−1
m+n (sn) dsn

)αm+n−2

. . .

)αm+1

ds2

)αm

ds1

Since xm+n = xm is eventually decreasing, xm+n(sn) ≤ xm(t) for sn ≥ t, t being
sufficiently large. Further, am+n−1(t) = tσm+n−1Lam+n−1(t), with σm+n−1 = %m+n−1,m− 1 <
−1, see (4.106) and Lemma 4.8. Thus we can apply (1.8) obtaining the existence of
a positive constant kn such that∫

∞

sn−1

am+n−1(sn)xαm+n−1
m+n (sn) dsn ≤ knxm(sn−1)sσm+n

n−1 Lam+n−1(sn−1)

We can proceed in a similar way for all the iterated integrals; note that (4.106) and
Lemma 4.8 assure that we can apply (1.8) at each step. We obtain that k ∈ (0,∞)
exists such that for t large

xm(t) ≤ xαm···αm+n−1
m (t)×

×

∫
∞

t
sσm

1 Lam(s1)

. . . ∫ ∞

sn1

sσm+n−1
n Lam+n−1(sn) dsn

αm+n−2

. . .

αm

ds1

≤ kxAm,m+n
m Lam(t)LAm,m+1

am+1
(t) · · · LAm,m+n−1

am+n−1
(t)tνm(1−Am,m+n)

where we used the equality νm(1 − Am,m+n) = σm + 1 + Am,m+1(σm+1 + 1) + · · · +
Am,m+n−1(σm+n−1 + 1), see (4.91). Since Am,m+n = α1 · · ·αn < 1, from (4.92) with
LF1 ≡ · · · ≡ LFn ≡ 1, there exists dm ∈ (0,∞) such that xm(t) ≤ dmtνmLm(t) for large t.

Now we show that xi(t) ≤ ditνiLi(t) for large t and for all i = 1, . . . ,n, with di > 0.
From the estimate for xm = xm+n, we can now easily get the estimation for xm+n−1.
Recall that (4.89) and (4.94) hold. From (4.117) and (1.8), in view of νm < 0, we
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have

xm+n−1(t) =

∫
∞

t
am+n−1(s)xαm+n−1

m (s) ds

≤ dαm+n−1
m

∫
∞

t
sσm+n−1+αm+n−1νmLam+n−1(s)Lαm+n−1

m (s) ds

≤ dm+n−1tνm+n−1Lam+n−1(t)Lαm+n−1
m (t) = dm+n−1tνm+n−1Lm+n−1(t)

for large t, where dm+n−1 is a suitable positive constant. Repeating this process, and
taking into account the modulo n convention, it results xi(t) ≤ ditνiLi(t) for large t
and for all i = 1, . . . ,n.

Next we derive lower estimates for xi’s. For brevity we sometimes omit argu-
ments. Again take any (x1, . . . , xn) ∈ SDS. Then

−(x1x2 · · · xn)′ = −

n∑
i=1

x′i xi+1 · · · xi+n−1 =

n∑
i=1

aix
αi
i+1xi+1 · · · xi+n−1

=

n∑
i=1

Hi, where Hi = aix
αi
i+1

n∏
k=1;k,i

xk.

Consider the (positive) numbers p1, . . . , pn defined in Lemma 4.5. System (4.101)
is equivalent to the system

p1 + · · · + pn = 1,
p2 + p3 + · · · + pn−1 + pn(αn + 1) = p1(α1 + 1) + p3 + · · · + pn,

p1(α1 + 1) + p3 + · · · + pn = p1 + p2(α2 + 1) + p4 + · · · + pn,
...

p1 + · · · + pn−3 + pn−2(αn−2 + 1) + pn = p1 + · · · + pn−2 + pn−1(αn−1 + 1).

(4.118)

From Lemma 4.10 we get that

−(x1x2 · · · xn)′ =

n∑
i=1

Hi ≥

n∏
i=1

Hpi
i

= ap1
1 ap2

2 · · · a
pn
n xp2+p3+···+pn−1+pn(αn+1)

1 xp1(α1+1)+p3+···+pn
2 ×

× · · · xp1+p2+···+pn−2(αn−2+1)+pn
n−1 xp1+p2+···+pn−2+pn−1(αn−1+1)

n

Observe that except of the first equality all sides of the equalities in (4.118) are
mutually equal and denote any of them by ξ; this is the same ξ as in Lemma 4.5.
Then, from the last estimate, we get

− (x1 · · · xn)′ ≥ ap1
1 · · · a

pn
n (x1 · · · xn)ξ. (4.119)
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By Lemma 4.5, we have ξ < 1. Dividing (4.119) by (x1 · · · xn)ξ and integrating from
t to∞, we obtain

(x1(t) · · · xn(t))1−ξ
≥ (1 − ξ)

∫
∞

t
ap1

1 (s) · · · apn
n (s) ds. (4.120)

From the upper estimates for xi’s we have

x1(t) · · · xn(t) ≤ l1xi(t)t
∑n

k=1;k,i νk

n∏
k=1;k,i

Lk(t) (4.121)

for large t, where i ∈ {1, . . . ,n} and l1 is some positive number. Taking into account
that

∑n
i=1 σipi < −1, see (4.103), from (1.8) there exists l2 ∈ (0,∞) such that∫

∞

t
ap1

1 (s) · · · apn
n (s) ds ≥ l2tσ1p1+···+σnpn+1Lp1

a1
(t) · · · Lpn

an
(t) (4.122)

for large t. Combining (4.120), (4.121), and (4.122), we find ci ∈ (0,∞) such that

xi(t) ≥ citν̄i L̄i(t)

for large t, where

ν̄i =
1

1 − ξ
(σ1p1 + · · · σnpn + 1) −

n∑
k=1;k,i

νk and L̄i =

(
Lp1

a1
· · · Lpn

an

) 1
1−ξ∏n

k=1;k,i Lk

Identities (4.103) and (4.104) now imply ν̄i = νi and L̄i(t) = Li(t), i = 1, . . . ,n. Thus
we have proved xi(t) � tνiLi(t) as t → ∞, i = 1, . . . ,n. This implies (4.114). The
property xi ∈ RV(νi), i = 1, . . . ,n, and asymptotic formula (4.97) follow by the
same arguments as those used in the second part of the proof of Theorem 4.14-(i).

(ii) The proof of this statement can be found in [146], and uses similar arguments
as part (i). Note that certain additional condition is assumed in [146]. But in view of
Lemma 4.8, under the assumptions of Theorem 4.15-(ii), that additional condition
is automatically satisfied. �

Theorem 4.15 can be applied, for instance, to the equations

x(n) = (−1)np(t)Φβ(x), (4.123)

and
x(n) = p(t)Φβ(x), (4.124)

where p(t) = t%Lp(t), Lp ∈ SV and 0 < β < 1, leading to the following results.
(a) If % + n < 0, then (4.123) possesses a solution x such that limt→∞ x(i)(t) = 0,

i = 0, . . . ,n − 1, and for any such a solution it holds

x ∈ RV
(
% + n
1 − β

)
(4.125)
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with

x1−β(t) ∼ t%+nLp(t)
n∏

j=1

1 − β
−% − n + (1 − β)( j − 1)

as t→∞.

(b) If % + 1 + β(n− 1) > 0, then equation (4.124) possesses a solution x such that
limt→∞ x(i)(t) = ∞, i = 1, . . . ,n − 1, and for any such a solution (4.125) holds with

x1−β(t) ∼ t%+nLp(t)
n∏

j=1

1 − β
% + n − (1 − β)( j − 1)

as t→∞.

The theorems of this subsection can clearly be applied to the equation of the
form (4.82), or even to the more general equation

Dqn(γn)Dqn−1(γn−1) · · ·Dq1(γ1)x + δp(t)Φβ(x) = 0 (4.126)

with D f (γ)x = d
dt ( f (t)Φγ(x)). As a special case of (4.126), we get the (above dis-

cussed) equation
(r(t)Φα(x′))′ = p(t)Φβ(x). (4.127)

We point out that equations of this form (but this holds also for some higher order
equations or for second order systems), are often studied in separate settings
depending on whether the integral

∫
∞

a r−1/α(s) ds diverges or not. The results of
this subsection are in such a form that this distinction is not necessary and all
possible combinations which may occur in second order systems or higher order
equations are included in our setting.

In Subsection 5.1.2 we indicate another application of Theorem 4.14, it concerns
a scalar second order equation with generalized Φ-Laplacian.
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Chapter 5
Some other nonlinear differential
equations

5.1 Equations with a general Φ-Laplacian

As a typical prototype of the objects from the title of this section, let us consider
the second order equation

(r(t)G(y′))′ = p(t)F(y), (5.1)

where r > 0, p are continuous functions on [a,∞), G is an increasing odd home-
omorphism defined on an open interval (−ρ, ρ), 0 < ρ ≤ ∞, and Im G = (−σ, σ),
0 < σ ≤ ∞, F is a real continuous function on R such that uF(u) > 0 for u , 0.

In fact, Emden-Fowler type equations (which are studied in the previous chap-
ter) are sometimes in so general form that include also equation (5.1). For instance,
the general setting of Subsection 4.3.8 allows us to apply (after a modification) The-
orem 4.14 to equation (5.1). This fact will be illustrated in Subsection 5.1.2, where
we examine certain boundary value problem involving equation (5.1).

Note that typically — in considerations within the theory in the framework of
regular variation — it is assumed that G−1 or a generalized inverse of G is regularly
varying. Examples satisfying these assumptions are the classical p-Laplacian

G(u) = Φα(u) = |u|α sgn u ∈ RV(α) ∩ RV0(α)

(even this function is trivially regularly varying), or

G(u) = Φα(u) ln |u| ∈ RV(α) ∩ RV0(α),

or
G(u) = uδ(A + Buβ)γ ∈ RV(δ + βγ) ∩ RV0(δ)

165
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if δ, β, γ > 0. Other, more special and typical, prototypes are G(u) = ΦC(u) or
G(u) = ΦR(u), where

ΦC(u) =
u

√

1 + u2
and ΦR(u) =

u
√

1 − u2
,

these operators arise in studying radially symmetric solutions of partial differ-
ential equations with the mean curvature operator and the relativity operator,
respectively. Note that Φ−1

C = ΦR, Φ−1
R = ΦC, and ΦC,ΦR ∈ RV0(1).

Recall that the inverse of an increasing regularly varying function of index
ϑ > 0 is in RV(1/ϑ). A similar statement can be proved for functions in RV0(ϑ).

In some considerations, thanks to the theorem about asymptotic inversions of
RV functions, the assumption on the monotonicity of G can be omitted; one can
then work, for instance, with the generalized inverse instead of the inverse.

In working with some forms of G, like, for instance, G(x) = x ln |x|, the Lambert
W function may play an important role. The inverse of G is in this case G−1(x) =
eW(x). Note that W cannot be expressed in terms of elementary functions.

5.1.1 A boundary value problem on a half-line

The results of this subsection are based on the paper [27] by Došlá, Marini, and
Matucci. We are interested in solving the BVP on the whole half-line associated to
(5.1), r(t) > 0, p(t) being defined for t ∈ [0,∞), especially when the weight p changes
its sign, that is, if there exist t1, t2 ≥ 0 satisfying p(t1)p(t2) < 0. In addition to the
hypotheses at (5.1), it is assumed that F is nondecreasing and lim inft→∞ r(t) > 0.
The boundary conditions read as

y(0) = c > 0, y(t) > 0, 0 < lim
t→∞

y(t) < ∞, lim
t→∞

y′(t) = 0. (5.2)

Let p+, p−, denote respectively the positive and the negative part of p. Clearly,
p(t) = p+(t) − p−(t).

All the cases when

the inverse G−1 of G is RV0 or RPV0 or SV0

are discussed in [27]. For illustration, we present one selected result and the short-
ened proof. A crucial role in all the proofs is played by the Schauder-Tychonoff
fixed point theorem. Very helpful are also various facts which are consequences
of simple properties of RV and RPV functions like, for instance, g(u) ≤ Muα−ε,
0 < ε < α, or g(λu) ≤ Mλαg(u), λ ∈ (0, 1], on (0,T] for some M > 0, provided
g ∈ RV0(α), α > 0, etc.

Theorem 5.1. Let G−1
∈ RV0(α) with α > 0, and assume that

lim
u→0+

F(u)
u1/β

= 0, (5.3)
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and for some ε ∈ (0, α − β),∫
∞

0

(
1

r(s)

∫
∞

s
p+(τ) dτ

)α−ε
ds < ∞,∫

∞

0

(
1

r(s)

∫
∞

s
p−(τ) dτ

)α−ε
ds < ∞.

(5.4)

Then the boundary value problem (5.1), (5.2) is solvable for any small positive c. Moreover,
every solution is of bounded variation on [0,∞).

Proof. Choose µ > 0 such that

Tµ = µmax
{

max
t≥0

(
1

r(t)

∫
∞

t
p+(s) ds

)
,min

t≥0

(
1

r(t)

∫
∞

t
p−(s) ds

)}
< σ.

Since G−1
∈ RV0(α), having a fixed ε < α−β, a positive constant M exists such that

G−1(u) ≤Muα−ε for 0 < u ≤ Tµ. Choose c > 0 sufficiently small such that F(2c) ≤ µ.
Let Ω be the subset of the Fréchet space C[0,∞) given by

Ω =
{
u ∈ C[0,∞) :

c
2
≤ u(t) ≤ 2c

}
and define in Ω the operator T as follows

T (u)(t) = c +

∫ t

0
G−1

(
1

r(s)

(∫
∞

s
p−(τ)F(u(τ)) dτ −

∫
∞

s
p+(τ)F(u(τ)) dτ

))
.

By the previous considerations, T is well defined. It can be shown that T (Ω) ⊂ Ω,
T (Ω) is relative compact, and T is continuous. Thus we can apply the Schauder-
Tychonoff fixed point theorem, which guarantees the existence of y ∈ Ω such that
y(t) = T (y)(t), i.e. y is a solutions of (5.1). Clearly,

y′(t) = G−1
(

1
r(t)

(∫
∞

t
p−(s)F(y(s)) ds −

∫
∞

t
p+(s)F(y(s)) ds

))
and so

−G−1
(

F(2c)
r(t)

∫
∞

t
p+(s) ds

)
≤ y′(t) ≤ G−1

(
F(2c)
r(t)

∫
∞

t
p−(s) ds

)
.

Since 1/r(t) is bounded as t → ∞, we have limt→∞ y′(t) = 0 and, from (5.4),
y′ ∈ L1[0,∞). Thus, y is of bounded variation on [0,∞) and the limit limt→∞ y(t) is
finite. Since y belongs to Ω, the assertion follows. �

Note that condition (5.3) is satisfied, for instance, if F ∈ RV0(γ), where γ > 1/β.
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5.1.2 Regularly varying solutions

Theorem 4.14 can be modified, for instance, for a system of the form

x′i = ai(t)Gi(bi(t), xi+1),

i = 1, . . . ,n, where xn+1 means x1, ai, bi are regularly varying, and Gi are regularly
varying with respect to both variables. Such a modification enables us to include
equations like (5.1), where r, p are positive continuous functions on [a,∞) with r ∈
RV(σ), p ∈ RV(%), and F,G are continuous functions onRwith uF(u) > 0,uG(u) > 0
for u , 0, |G(| · |)| ∈ RV0(α), |F(| · |)| ∈ RV0(β), α, β ∈ (0,∞), G being increasing in
a neighborhood of zero. In fact, the theorem about asymptotic inversions of RV
allows us to omit the assumption on the monotonicity of G, but for simplicity we
assume it. Equation (5.1) can be written asx′1 = p(t)F(x2),

x′2 = G−1
(

1
r(t) x1

)
,

where G−1 stand for the inverse of G; it holds G−1
∈ RV0(1/α). Assume that

LF(ug(u)) ∼ LF(u), LG−1(ug(u)) ∼ LG−1(u) as u→ 0+ (5.5)

for every g ∈ SV0. The subhomogeneity condition reads as α > β. If

% + 1 < min
{
σ − α,

β

α
(σ − α)

}
,

then (5.1) possesses an eventually positive decreasing solution x such that

lim
t→∞

x(t) = lim
t→∞

r(t)G(x′(t)) = 0, (5.6)

x ∈ RV(ν), and

xα−β(t) ∼
1

−(% + 1 + βν)(−ν)α
·

Lα
G−1(t%+1+βν−σ)LF(tν)Lp(t)

Lr(t)
· tν(α−β) (5.7)

as t → ∞, where ν = (α − σ + % + 1)/(α − β). Note that also x′(t) tends to zero as
t → ∞. For completeness we add that if, in addition, F = Φβ and G = Φα, then
every solution x of (5.1) with (5.6) then satisfies x ∈ RV(ν) and (5.7). We already
know that other examples of G, different from the classical p-Laplacian case, are
GC(u) and GR(u), the curvature operator and the relativity operator, respectively, both
are inRV0(1), and are mutually inverse. Note that condition (5.5) is clearly fulfilled
for GC,GR.
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5.2 Partial differential equations

5.2.1 Radial RV solutions of partial differential systems

It is clear that many of the results in this text (that are established for ordinary
differential equations) give useful information about asymptotic form of radial
solutions to associated partial differential equations. For example, let us show
how Theorem 4.11 can be applied to the partial differential systemdiv

(
‖∇u‖α−1

∇u
)

= ϕ̄(‖z‖)|v|λ−1v,
div

(
‖∇v‖β−1

∇v
)

= ψ̄(‖z‖)|u|µ−1u
(5.8)

in an exterior domain in RN, N ≥ 2, where ϕ̄(t) = tσ̄Lϕ̄(t) ∈ RV(σ̄), ψ̄(t) = t%̄Lψ̄(t) ∈
RV(%̄). If we assume

ν̄ := Λ(β(α + 1 + σ̄) + λ(β + 1 + %̄)) < 0,
ω̄ := Λ(α(β + 1 + %̄) + µ(α + 1 + σ̄)) < 0,
N < min{1 − (ν̄ − 1)α, 1 − (ω̄ − 1)β},

then the existence of a positive (strongly) decreasing radial solution of (5.8) is
guaranteed, and any such a solution (u, v) satisfies

lim
‖z‖→∞

u(z)

|z|ν̄LβΛϕ̄ (‖z‖)LλΛ
ψ̄

(‖z‖)
=

(
K̄1K̄

λ
α
2

)αβΛ
,

lim
‖z‖→∞

v(z)

|z|ω̄LµΛ
ϕ̄ (‖z‖)LαΛ

ψ̄
(‖z‖)

=

(
K̄2K̄

µ
β

1

)αβΛ
,

where K̄1 = −
(
ν̄ ((1 − ν̄)α −N + 1)

1
α

)−1
, K̄2 = −

(
ω̄

(
(1 − ω̄)β −N + 1

) 1
β

)−1
. Indeed, a

radial function (u(z), v(z)) is a solution of (5.8) in Σa = {z ∈ RN : ‖z‖ ≥ a} if and only
if (x(t), y(t)), t = ‖z‖, given by (x(‖z‖), y(‖z‖)) = (u(z), v(z)), satisfies the ordinary
differential system 

(
tN−1Φα(x′)

)′
= tN−1ϕ̄(t)Φλ(y),(

tN−1Φβ(y′)
)′

= tN−1ψ̄(t)Φµ(x),
(5.9)

t ≥ a. System (5.9) has the same structure as (4.40), with p(t) = q(t) = tN−1,
ϕ(t) = tN−1ϕ̄(t), ψ(t) = tN−1ψ̄(t). Thus γ = δ = N− 1, Lp(t) = Lq(t) = 1, σ = N− 1 + σ̄,
% = N − 1 + %̄, Lϕ(t) = Lϕ̄(t), Lψ(t) = Lψ̄(t). Applying Theorem 4.11 to system (5.9)
and going back to the original variables we get the result.

Note that if Theorem 4.11 was obtained just for system (4.40) with p(t) = q(t) = 1,
then, after a suitable transformation of the independent variable, only partial
systems of the form (5.8) satisfying the conditions α = β and α + 1 > N would
be detectable. Arbitrariness of p, q and of the convergence or divergence of the
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integrals in (4.41) enables us to omit these restrictions. Moreover, our general
setting allows us to consider even more general partial differential systems where
the leading coefficients are formed by elliptic matrices of certain special forms.

Similarly we can apply Theorem 4.14 and Theorem 4.15 when studying positive
radial solutions to partial differential systems of the form

div(‖∇u1‖
λ1−1
∇u1) = ϕ1(‖z‖)G(u2),

div(‖∇u2‖
λ2−1
∇u2) = ϕ2(‖z‖)G(u3),

...

div(‖∇uk‖
λk−1
∇uk) = ϕk(‖z‖)G(u1).

(5.10)

For some other information concerning related partial differential systems see
e.g. [22, 24] and the references in [24, 127, 162]. Recall that systems similar to (5.8)
are in the literature sometimes called as of Lane-Emden type. For information about
applications of such systems see e.g. [169].

5.2.2 Almost radial symmetry

In this subsection we give another demonstration how RV functions can appear
in the qualitative theory of differential equations. This time we consider the partial
differential equation

∆u = ϕ(|x|)uλ, x ∈ Rnand |x| large, (5.11)

where n ≥ 3 is an integer, λ ∈ (1,∞) and, for some t0 > 0, ϕ : [t0,∞) → (0,∞) is a
continuous function.

We present one commented result from Taliaferro [159] without a proof, and
the interesting fact is to observe how the subject of regular variation is related to
the conditions on ϕ in the theorem. It is worthy of note — as claimed by Taliaferro
in the paper — that is was Omey who pointed him out this fact.

We are interested in whether all positive solutions of (5.11) are almost radial
when |x| is large, i.e.,

u(x)
ū(|x|)

→ 1 as |x| → ∞,

where ū(t) is the average of u on the sphere |x| = t. Assume that∫
∞

t0

sαϕ(s) ds < ∞ (5.12)

for some α > 1 and note also other (mutually exclusive) cases are discussed in
[159].

Theorem 5.2. Suppose that u(x) is a positive solution of (5.11). Assume that

ϕ(t)
ψ(t)

→ 1 as t→∞ (5.13)
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for some continuously differentiable function ψ : [t0,∞)→ (0,∞) such that

t2n−2ψ(t) is monotone on [t0,∞), (5.14)

and

lim
t→∞

 1√
ψ(t)

′ ∫ ∞

t

√
ψ(s)ds = M for some M ∈ R ∪ {±}. (5.15)

Then

lim
|x|→∞

u(x)
ū(|c|)

= 1 and lim
|x|→∞

[u(x) − ū(|x|)] = 0.

Moreover, 1 ≤M ≤ (α + 1)/(α − 1) and either

lim
|x|→∞

u(x)
(
λ − 2

2

∫
∞

|x|

√
ψ(s) ds

) 2
λ−1

=

(
1 +

(n − 2)(λ − 1)(M − 1)
2

) 1
λ−1

,

or
u(x) = c + o(1) as |x| → ∞,

or

u(x) =
c + o(1)
|x|n−2 as |x| → ∞,

where c is some positive constant.

Remark 5.1. Let ψ : [t0,∞) → (0,∞) be a continuously differentiable function.
Using methods of the subject of regular variation one can easily show that ψ
satisfies both

∫
∞

t0

√
ψ(s) ds < ∞ and (5.15) with M = 1 if and only if

ψ(t) = ψ(t0) exp
{
−2

∫ t

t0

1 + h′(s)
h(s)

ds
}

for t ≥ t0 for some continuously differentiable function h : [t0,∞) → (0,∞) such
that h′(t)→ 0 as t→∞. In this case∫

∞

t

√
ψ(s) ds =

(∫
∞

t0

√
ψ(s) ds

)
exp

{
−

∫ t

t0

1
h(s)

ds
)

for t ≥ t0 and for each β ∈ R there exists t1 > t0 such thatψ(t)tβ is strictly decreasing
on [t1,∞). Therefore, since there are functions h(t) as above which tend arbitrarily
fast to zero as t→∞, we see that Theorem 5.2 allows ψ(t) to tend arbitrarily fast to
zero as t→∞ and allows solutions of (5.11) to tend arbitrarily fast to∞ as |x| → ∞.
However conditions (5.13), (5.14), and (5.15) do require that ψ(t) does not oscillate
too much as t→∞.
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Remark 5.2. Let ϕ : [t0,∞)→ (0,∞) be a continuous function such that∫
∞

t0

√
ψ(s) ds < ∞.

(As pointed out in the previous remark, this will be the case if (5.12) holds.) Then
there exists a continuously differentiable function ψ : [t0,∞) → (0,∞) satisfying
both (5.13) and (5.15) for some M ∈ (1,∞) if and only if ϕ ∈ RV(−2β) for some
β ∈ (1,∞). In this case βM = β + M

5.3 RV and RPV solutions for a class of third order
nonlinear differential equations

The results of this section are based on the paper [65] by Jaroš, Kusano, and Marić.
Let us consider the third order differential equation of the form

x′′′ + 2p(t)x′ + p′(t)x = F(t, x), (5.16)

where p is continuously differentiable on [a,∞), F is continuous on [a,∞) ×R and

|F(t,u)| ≤ G(t,u)|,

where G : [a,∞) × R → [0,∞) is a continuous function which is nondecreasing
in the second variable for t ≥ a. Along with (5.16) consider the self-adjoint linear
equation

y′′′ + 2p(t)y′ + p′(t)y = 0. (5.17)

With the help of the results for linear second order equations (Theorems 2.1,
2.2, 2.3, 2.4), we indicate the situation in which (5.17) has a fundamental set of
solutions consisting of regularly and rapidly varying functions. We then establish
the conditions under which (5.16) possesses a set of solutions which are asymptotic
as t→∞ to the indicated RV and RPV solutions of (5.16).

5.3.1 The self-adjoint equation

Theorem 5.3. Let C be a constant such that C < 1/4 and let %, σ, with % < σ, denote the
real roots of λ2

− λ + C = 0. If p is integrable on [a,∞) and satisfies

lim
t→∞

t
∫
∞

t
p(s) ds = 2C, (5.18)

then (5.17) has a fundamental set of RV (hence nonoscillatory) solutions yi(t), i = 1, 2, 3,
of the form

y1(t) = t2%L1(t), y2(t) = tL2(t), y3(t) = t2σL3(t), (5.19)

where L1 ∈ SV, L2(t)→ 1/(1 − 2%), and L3(t) ∼ 1/((1 − 2%)2L1(t)) as t→∞.
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Proof. By Theorems 2.2 and 2.3, condition (5.18) is necessary and sufficient for the
equation

z′′ +
1
2

p(t)z = 0 (5.20)

to possess two linearly independent RV solutions of the form u(t) = t%L1(t) and
v(t) = tσL2(t), where L1 ∈ SV and L2(t) ∼ 1/((1 − 2%)2L1(t)) as t → ∞. It is
known that if {u, v} is a fundamental set of solutions of (5.20), then {y1, y2, y3},
where y1 = u2, y2 = uv, y3 = v2, is a fundamental set of solutions of (5.17). Simple
application of RV functions now gives the result. �

The borderline case (C = 1/4) between oscillation and nonoscillation of (5.20)
is treated in the next theorem.

Theorem 5.4. Suppose that

lim
t→∞

∫
∞

t
p(s) ds =

1
2
.

Suppose furthermore that the function

φ(t) = t
∫
∞

t
p(s) ds −

1
2

satisfies ∫
∞
|φ(t)|

t
dt < ∞

and ∫
∞
|ψ(t)|

t
dt < ∞, where ψ(t) =

∫
∞

t

|φ(s)|
s

ds < ∞.

Then equation (5.17) has a fundamental set of RV(1) (hence nonoscillatory) solutions
yi(t), i = 1, 2, 3, of the form

y1(t) = tL1(t), y2(t) = t ln tL2(t), y3(t) = t ln3 tL3(t),

where L1(t)→ k ∈ (0,∞), L2(t)→ 1, L3(t)→ 1/k2 as t→∞.

Proof. One proceeds exactly as in the proof of the previous theorem, using this
time Theorem 2.4. �

Theorem 5.5. Let p(t) < 0 for t ≥ a. If for each λ > 1

lim
t→∞

(
−t

∫ λt

t
p(s) ds

)
= ∞, (5.21)

then (5.17) has at least two RPV solutions such that the first of these solutions decreases
and is of the classRPV(−∞) whereas the second one increases and is of the classRPV(∞).

Proof. From Theorem 2.1, (5.20) has solutions u ∈ RPV(−∞) and v ∈ RPV(∞)
if and only if (5.21) holds. It is clear from the definition of RPV functions that
y1 = u2

∈ RPV(−∞) and y3 = v2
∈ RPV(∞). �

Note that the third linearly independent solutions y2 = uv need not to be RPV
at all. This is shown by the example: u(t) = e−t, v(t) = et, so that y2(t) = 1.
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5.3.2 RV and RPV solutions of the perturbed equation

First we establish sufficient conditions for (5.16) to have solutions x1, x2, x3 with
the same asymptotic behavior as the solutions y1 = u2, y2 = uv, y3 = v2 of (5.17),
respectively. Then we apply these results to construct RV and RPV solutions of
(5.16).

Theorem 5.6. If for some α > 0∫
∞

a
v2(s)G(s, αu2(s)) ds < ∞, (5.22)

then there exists an eventually positive solution x1 of (5.16) such that x1(t) ∼ αu2(t)/2 as
t→∞.

Proof. Choose T ≥ a such that∫
∞

T
v2(s)G(s, αu2(s)) ds ≤

α
2
,

which is possible by (5.22). Define the set X1 by

X1 = {y ∈ C[T,∞) : 0 ≤ x(t) ≤ αu2(t), t ≥ T}

and the integral operator F1 by

F1x(t) =
α
2

u2(t) + u2(t)
∫
∞

t

(∫ s

t

1
u2(s2)

∫ s2

t

1
u2(s1)

ds1 ds2

)
u2(s)F(s, x(s)) ds,

t ≥ T. It can be shown that all the hypotheses of the Schauder-Tychonoff fixed
point theorem are fulfilled, and thus it ensures the existence of x1 ∈ X1 such that
x1 = F1x1. So x1 is also a solution of (5.16). The asymptotics of x1 is an immediate
consequence of the integral equation x1 = F1x1. �

The proofs of the next two theorems are also based on the Schauder-Tychonoff
fixed point theorem; we omit details.

Theorem 5.7. If for some β > 0∫
∞

a
u(s)v(s)G(s, βu(s)v(s)) ds < ∞, (5.23)

then there exists an eventually positive solution x2 of (5.16) such that x2(t) ∼ βu(t)v(t)/2
as t→∞.

Theorem 5.8. If for some γ > 0∫
∞

a
u2(s)G

(
s, γv2(s)

)
ds < ∞, (5.24)

then there exists an eventually positive solution x3 of (5.16) such that x3(t) ∼ γv2(t)/2 as
t→∞.
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If p satisfies condition (5.18), then the existence of a fundamental set of RV
solutions to (5.17) given by (5.19) is guaranteed. Then, of conditions (5.22), (5.23)
and (5.24) hold, Theorems 5.6, 5.7, 5.8, respectively, guarantee the existence of a
fundamental set of solutions x1, x2, x3 of (5.16) such that xi(t) ∼ αiyi(t) as t → ∞,
αi > 0, i = 1, 2, 3. But this also means that xi are in RV. As an illustration, take

F(t, x) = tωM(t)|x|δ sgn x, ω ∈ R, δ ∈ (0,∞), M ∈ SV,

where for a suitable choice of ω, δ the conditions posed on G are fulfilled.
To obtain the existence and asymptotic behavior of RPV solutions of the

perturbed equation (5.16) with p(t) < 0, one proceeds in the same way as above in
the RV case.

5.4 Classification of convergence rates of solutions to
perturbed first order ODE’s

The content of this section is based on selected results from Appleby, Patterson
[6]. We are interested in a classification of the rates of convergence to a limit of the
solutions of the scalar differential equation

x′(t) = − f (x(t)) + g(t), t > 0, x(0) = ξ. (5.25)

We assume that the unperturbed equation

x′(t) = − f (x(t)), t > 0, x(0) = ζ (5.26)

has a unique globally stable equilibrium (which we set to be at zero). This is
characterized by the condition x f (x) > 0 for x , 0, f (0) = 0. Further we assume that
f ∈ C(R,R), g ∈ C([0,∞),R), f is locally Lipschitz continuous on R. We suppose
that f (x) does not have linear leading order behavior as x→ ∞; moreover, we do
not ask that f forces solutions of (5.26) to hit zero in finite time. We define

F(x) =

∫ 1

x

1
f (u)

du, x > 0,

and avoiding solutions of equation (5.26) to hitting zero in finite time forces
limx→0+ F(x) = ∞. We notice that F : (0,∞) → R is a strictly decreasing func-
tion, so it has an inverse F−1, and we have limt→∞ F−1(t) = 0. The significance of
the functions F and F−1 is that they enable us to determine the rate of convergence
of solutions of (5.26) to zero, because F(y(t))−F(ζ) = t for t ≥ 0 or y(t) = F−1(t+F(ζ))
for t ≥ 0. It is then of interest to ask whether solutions of (5.25) will still converge to
zero as t→∞, and how this convergence rate modifies according to the asymptotic
behavior of g. In order to do this with reasonable generality we find it convenient
and natural to assume at various points that the functions f and g are regularly
varying.
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The main result of [6], which characterizes the rate of convergence of solutions
of (5.25) to zero, can be summarized as follows: Suppose that f ∈ RV0(β), β > 1,
and that g is positive and regularly varying at infinity, in such a manner that

lim
t→∞

g(t)
( f ◦ F−1)(t)

=: M ∈ [0,∞]

exists. If M = 0, the solution of (5.25) inherits the rate of decay to zero of y, in the
sense that

lim
t→∞

F(x(t))
t

= 1.

If M ∈ (0,∞) we can show that the rate of decay to zero is slightly slower, obeying

lim
t→∞

F(x(t))
t

= Λ = Λ(L) ∈ (0, 1)

and a formula for Λ purely in terms of M and β can be found. Finally, in the case
that M = ∞ can be shown that

lim
t→∞

F(x(t))
t

= 0.

If it is presumed that g is regularly varying at infinity with negative index, or g is
slowly varying and is asymptotic to a decreasing function, then the exact rate of
convergence can be found, namely that limt→∞ f (x(t))/g(t) = 1. These asymptotic
results are proven by constructing appropriate upper and lower solutions to the
differential equation (5.25) as in [3].

In order to simplify the analysis, we assume that g(t) > 0, t > 0; x(0) = ξ > 0.
Note that the results can rapidly be extended in the case g(t) < 0 and ξ < 0.

We will not give the proofs of all the results presented here; note that some of
them are rather technical. We prefer to present — for illustration — just a sketch
of one selected proof. However, we give several comments.

The first result says that the global convergence of solutions of (5.25), as well
as the rate of convergence of solutions to 0 is preserved provided the perturbation
g decays sufficiently rapidly. In order to guarantee this, we request only that f be
asymptotic to a monotone function close to zero.

Theorem 5.9 (Appleby, Patterson [6]). Let there exist φ such that

lim
t→0+

f (t)
φ(t)

= 1, φ is increasing on (0, δ). (5.27)

If

lim
t→∞

g(t)
( f ◦ F−1)(t)

= 0, (5.28)

then the unique continuous solution of (5.25) obeys

lim
t→∞

F(x(t))
t

= 1. (5.29)
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Immediately this theorem presents a question: Is it possible to find slower rates
of decay of g(t) → 0 as t → ∞ than exhibited in (5.28), for which the solution x
of (5.25) still decays at the rate of the unperturbed equation, as characterized by
(5.29)? In some sense, the next theorem says that the rate of decay of g in (5.28)
cannot be relaxed, at least for functions f which are regularly varying at zero with
index β > 1, or which are rapidly varying at zero.

In the case when f is regularly varying at 0 with index 1 (and f (x)/x → 0
as x → 0), the condition (5.28) is not necessary in order to preserve the rate of
decay embodied by (5.29). A more careful analysis is needed to characterize the
asymptotic behavior of solutions of (5.25).

Theorem 5.10 (Appleby, Patterson [6]). Let x be the unique continuous solution of
(5.25). Suppose that there exists φ such that (2.24) holds, and suppose further that there
exists M > 0 such that

lim
t→∞

g(t)
( f ◦ F−1)(t)

= M. (5.30)

Then x(t)→ 0 as t→∞.
(i) If f ∈ RV(β) for β > 1, then

lim
t→∞

F(x(t))
t

= Λ∗(M) ∈ (0, 1), (5.31)

where Λ∗ is the unique solution of (1 −Λ∗)Λ
−β/(β−1)
∗ = M.

(ii) If f ◦ F−1
∈ RV(−1), then

lim
t→∞

F(x(t))
t

= Λ∗(M) ∈ (0, 1),

where Λ∗ is the unique solution of (1 −Λ∗)/Λ∗ = M.

If y is the solution of (5.26), we have y(t)/F−1(t) → 1 as t → ∞. Moreover, in
the case when β > 1, as F−1

∈ RV(−1/(β − 1)), we have

lim
t→∞

x(t)
y(t)

= lim
t→∞

x(t)
F−1(t)

lim
t→∞

F−1(Λ∗t)
F−1(t)

= Λ
−β/(β−1)
∗ > 1.

Therefore, the solution of (5.25) is of the same order as the solution of (5.26),
but decays more slowly by a factor depending on M. In the second case, when
F−1
∈ SV, we have

lim
t→∞

x(t)
y(t)

= lim
t→∞

x(t)
F−1(t)

lim
t→∞

F−1(Λ∗t)
F−1(t)

= 1,

so once again the solution of (5.25) is of the same order as the solution of (5.26)
There is a greater alignment of the hypotheses that appears at a first glance.

When f ∈ RV0(β) for β > 1, it follows that F ∈ RV0(1 − β) and therefore that
F−1
∈ RV(−1/(β−1)) and f ◦F−1

∈ RV(−β/(β−1)). Hence we see that the hypothesis
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of part (ii) are in some sense the limit of those in part (i) when β→∞. This suggests
that part (ii) of the theorem applies in the case when f is a rapidly varying function
at 0, and the solutions of the unperturbed differential equation are slowly varying
at infinity. Moreover, the solution of the perturbed differential equation should
also be slowly varying in this case. If we suppose that f ◦ F−1

∈ RV(−1), then
F−1
∈ SV. Therefore, we do not need to assume this second hypothesis in part (ii)

of the above theorem. Further note that if f ∈ RPV0(∞), then F−1
∈ SV, see [6].

We notice that viewed as a function of M, Λ∗ : (0,∞) → (0, 1) is decreasing
and continuous with limM→0+ Λ∗(M) = 1, limM→∞Λ∗(M) = 0. The first limit
demonstrates that the limit in (5.31) is a continuous extension of the limit observed
in Theorem 5.9, because the hypothesis (5.28) can be viewed as (5.30) with M = 0,
while the resulting limiting behavior of the solution (5.29) can be viewed as (5.31)
where Λ∗ = 1. The monotonicity of Λ∗ in M indicates that the slower the decay
rate of the perturbation is (i.e., the greater is M) the slower the rate of decay of the
solution of (5.25) is. Since limM→∞Λ∗(M) = 0, this result also suggests that

lim
t→∞

g(t)
( f ◦ F−1)(t)

= ∞ (5.32)

implies

lim
t→∞

F(x(t))
t

= 0, (5.33)

so that the solution of the perturbed differential equation entirely loses the de-
cay properties of the underlying unperturbed equation when the perturbation g
exceeds the critical size indicated by (5.30), and decays more slowly yet. This
conjecture is borne out by virtue of the next theorem.

Theorem 5.11. Let x be the unique continuous solution of (5.25). Suppose that there
exists φ such that (2.24) holds, and suppose further that f and g obey (5.32). Suppose
finally that x(t) → 0 as→ ∞. If f ∈ RV0(β) for β > 1 or f ◦ F−1

∈ RV(−1), then the
unique solution of (5.25) obeys (5.33).

Proof. We give only a sketch of the proof when f ◦ F−1
∈ RV(−1) and F−1

∈ SV.
The other part is proved similarly. For details see [6]. Since f (x)/φ(x) → 1 as
x→ 0+ and F−1(t)→ 0 as t→∞, we have

lim
t→∞

φ(F−1(t))
f (F−1(t))

= 1.

Hence h = φ ◦ F−1
∈ RV(−1). Let ε ∈ (0, 1/2). By (5.32), we have that there exists

T1(ε) > 0 such that h(t) < ε2g(t) for t ≥ T1(ε). Also, as h ∈ RV(−1), we have that
h(εt)/h(t) → 1/ε as t → ∞. Hence there exists T2(ε) > 0 such that h(εt) < 2h(t)/ε
for t ≥ T2(ε). Define T(ε) = 1 + max{T1(ε),T2(ε)}. Now define

K = max
{

2,
2x(T)
x1(ε)

,
x(T)

F−1(εT)

}
,



Chapter 5 179

where x1(ε) > 0 is such that f (x) < (1 + ε)φ(x) for x ≤ x1(ε), and also define

xL(t) = F−1[ε(t − T) + F(x(T)/K)],

t ≥ T. It can be shown that x′L(t) < − f (xL(t)) + g(t), t ≥ T; xL(T) < x(T). Therefore,
we have that xL(t) < x(t) for t ≥ T. One can then get

0 ≤ lim inf
t→∞

F(x(t))
t
≤ lim sup

t→∞

F(x(t))
t
≤ ε.

Letting ε→ 0+ gives (5.33). �

We observe that the hypothesis that x(t)→ 0 as→∞ has been appended to the
theorem. This is because the slow rate of decay of g may now cause solutions to
tend to infinity, if coupled with a hypothesis on f which forces f (x) to tend to zero
as x→∞ at a sufficiently rapid rate. We prefer to add this hypothesis, rather than
sufficient conditions on f and g which would guarantee x(t)→∞.

Several further situations are considered in [6]. For instance, g is assumed to
be regularly varying at infinity.

5.5 Nearly linear differential equations

The results of this section are taken from the paper [149] by Řehák. We consider
the nonlinear equation

(G(y′))′ = p(t)F(y), (5.34)

where p is a positive continuous function on [a,∞) and F,G are continuous functions
on R with uF(u) > 0,uG(u) > 0 for u , 0. To simplify our considerations we
suppose that F and G are increasing and odd. Nonlinearities F and G are further
assumed to have regularly varying behavior of index 1 at zero. More precisely, we
require

F(| · |),G(| · |) ∈ RV0(1); (5.35)

the classRV0 being defined below. This condition justifies the terminology a nearly
linear equation. Indeed, if we make a trivial choice F = G = id, then (5.34) reduces
to a linear equation. It is however clear that in contrast to linear equations, the
solution space of (2.1) is generally neither additive nor homogeneous. Examples
of F(u) and G(u) which lead to a nonlinear equation and can be treated within this
theory are: u| ln |u||, or u/| ln |u||, or u/

√

1 ± u2, and many others.

As we could see in Chapter 4, theory of regular variation has been shown very
useful in studying asymptotic properties of Emden-Fowler type equations, e.g. of
the form y′′ = q(t)|y|γ sgn y or, more generally,

y′′ = q(t)ϕ(y), (5.36)
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where |ϕ(| · |)| ∈ RV(γ) or |ϕ(| · |)| ∈ RV0(γ), γ > 0. Usually the sub-linearity
condition resp. the super-linearity condition is assumed, i.e., γ < 1 resp. γ > 1,
and such conditions play an important role in the proofs. Notice that from this
point of view, equation (5.34) (which arises as a variant of (5.36) with specific
nonlinearities) is neither super-linear nor sub-linear, since the indices of regular
variation of F and G are the same. Therefore, asymptotic analysis of (5.34) in the
framework of regular variation requires an approach which is different from the
usual ones for the above mentioned Emden-Fowler equation with γ , 1. The
crucial property is now the fact that the nonlinearities in (5.34) are somehow close
to each other (they can differ by a slowly varying function). It turns out that
a modification of some methods known from the linear theory is a useful tool.
However, as we will see, some phenomena may occur for (5.34) which cannot
happen in the linear case.

We are interested in asymptotic behavior of solutions y to (5.34) such that
y(t)y′(t) < 0 for large t. Without loss of generality, we restrict our study to eventu-
ally positive decreasing solutions of equation (5.34); such a set is denoted as DS.
As we will see, for any y ∈ DS, limt→∞ y′(t) = 0.

We start with the simple result which gives the conditions guaranteeing slow
variation of any solution inDS.

Theorem 5.12. Assume that

lim
t→∞

t
∫
∞

t
p(s) ds = 0, (5.37)

lim sup
u→0+

LF(u) < ∞ and lim inf
u→0+

LG(u) > 0. (5.38)

Then
∅ , DS ⊂ NSV.

Proof. Rewrite equation (5.34) as an equivalent system of the form

y′ = −G−1(u), u′ = −p(t)F(y),

where G−1 is the inverse of G. Then we apply the existence result [20, Theorem 1]
to obtainDS , ∅.

Take y ∈ DS, i.e., y(t) > 0, y′(t) < 0, t ≥ t0. Then limt→∞ y′(t) = 0. Indeed,
G(y′) is negative increasing and so is y′. If limt→∞ y′(t) = −c < 0, then y(t)− y(t0) ∼
−c(t− t0) as t→∞, which contradicts eventual positivity of y. Integration of (5.34)
from t to∞ yields

−G(y′(t)) =

∫
∞

t
p(s)F(y(s)) ds.

Hence,

|y′(t)|LG(|y′(t)|) =

∫
∞

t
p(s)y(s)LF(y(s)) ds ≤ y(t)

∫
∞

t
p(s)LF(y(s)) ds.
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Thus,
−ty′(t)

y(t)
≤

t
LG(|y′(t)|)

∫
∞

t
p(s)LF(y(s)) ds ≤

tM
N

∫
∞

t
p(s)ds, (5.39)

where M,N are some positive constants which exist thanks to (5.38). Since the
expression on the right hand side of (5.39) tends to zero, it follows that ty′(t)/y(t)→
0 as t→∞, and y ∈ NSV follows. �

Remark 5.3. Condition (5.37) is somehow necessary. Indeed, take y ∈ DS ∩ SV
and assume that lim infu→0+ LF(u) > 0 and lim supu→0+ LG(u) < ∞. First note that
because of monotonicity of y′, we have ty′(t)/y(t) → 0, and so y ∈ NSV. Set
w = G(y′)/y. Then w satisfies

w′ = p(t)
F(y)

y
− w

y′

y
(5.40)

for large t. There exists N ∈ (0,∞) such that

0 < −tw(t) ≤ −Nt
y′(t)
y(t)

→ 0

as t→∞. Hence,∫
∞

w(s)
y′(s)
y(s)

ds < ∞ and lim
t→∞

t
∫
∞

t
w(s)

y′(s)
y(s)

ds = 0.

Integration (5.40) from t to∞ and multiplying by t, we get

−tw(t) = t
∫
∞

t
p(s)

F(y(s))
y(s)

ds − t
∫
∞

t
w(s)

y′(s)
y(s)

ds,

which implies limt→∞ t
∫
∞

t p(s)LF(y(s)) ds = 0. Since M ∈ (0,∞) exists such that
LF(y(t)) ≥M for large t, condition (5.37) follows.

A necessity is discussed from certain point of view also in Remark 5.6.

Remark 5.4. Observe that in Theorem 5.12 we are dealing with all SV solutions
of (5.34). It follows from the fact that SV solutions cannot increase. Indeed, for
a positive increasing solution u of (5.34), due to convexity, we have u′(t) ≥ K1 for
some K1 > 0. By integrating, u(t) ≥ K1t+K2, which contradicts the fact the u ∈ SV.

Remark 5.5. The statements of Theorem 5.12 and Remark 5.3 can be understood
as a nonlinear extension of Theorem 2.1-(i).

In the next result, we derive asymptotic formulae for SV solutions provided p
is regularly varying of index −2. Define

F̂(x) =

∫ x

1

du
F(u)

, x > 0.
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The function F̂(x) is increasing on (0,∞). The constant 1 in the integral is unimpor-
tant; it can be replaced by any positive constant. Denote the inverse of F̂ by F̂−1.
We have |F̂| ∈ SV0 and in general limu→0+ |F̂(u)| can be finite or infinite. Denote

H(t) =
tp(t)

LG(1/t)

and note that H ∈ RV(−1) provided p ∈ RV(−2).

Theorem 5.13. Assume that p ∈ RV(−2), limu→0+ |F̂(u)| = ∞, and

LG(ug(u)) ∼ LG(u) as u→ 0+, (5.41)

for all g ∈ SV0. If y ∈ DS ∩ SV, then −y ∈ Π(−ty′(t)). Moreover:
(i) If

∫
∞

a H(s) ds = ∞, then

y(t) = F̂−1
{
−

∫ t

a
(1 + o(1))H(s) ds

}
(5.42)

(and y(t)→ 0) as t→∞.
(ii) If

∫
∞

a H(s) ds < ∞, then

y(t) = F̂−1
{

F̂(y(∞)) +

∫
∞

t
(1 + o(1))H(s) ds

}
(5.43)

(and y(t)→ y(∞) ∈ (0,∞)) as t→∞.

Proof. Take y ∈ DS ∩ SV and let t0 be such that y(t) > 0, y′(t) < 0 for t ≥ t0. Then

(G(y′))′ = pF(y) ∈ RV(−2 + 1 · 0) = RV(−2)

provided y(t)→ 0 as t→∞. If y(t)→ C ∈ (0,∞), then we get the same conclusion
since F(y(t))→ F(C) ∈ (0,∞), and so pF(y) ∈ RV(−2). Thus

G(−y′(t)) = −G(y′(t)) =

∫
∞

t
(G(y′(s)))′ds ∈ RV(−1).

In view of −y′ = G−1(G(−y′)), we get −y′ ∈ RV(−1). Hence,

−y(λt) + y(t)
−ty′(t)

=

∫ λt

t

−y′(u)
−ty′(t)

du =

∫ λ

1

−y′(st)
−y′(t)

ds→
∫ λ

1

ds
s

= lnλ (5.44)

as t→∞, thanks to the uniformity. This implies −y ∈ Π(−ty′(t)). Define

Ψ(t) = tG(y′(t)) −
∫ t

t0

G(y′(s)) ds.
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Then Ψ′(t) = tp(t)F(y(t)) ∈ RV(−1), which implies Ψ ∈ Π(tΨ′(t)), similarly as in
(5.44). Further, we claim Ψ ∈ Π(−tG(y′(t))). Indeed, fix λ > 0, and then

Ψ(λt) −Ψ(t)
−tG(y′(t))

=
λG(y′(λt))
−G(y′(t))

+ 1 −

∫ λt
t G(y′(s)) ds

−tG(y′(t))

=
λG(y′(λt))
−G(y′(t))

+ 1 +

∫ λ

1

G(y′(tu))
G(y′(t))

du→
∫ λ

1

du
u

= lnλ

as t→∞, thanks to G(−y′) ∈ RV(−1) and the uniformity. From the uniqueness of
the auxiliary function up to asymptotic equivalence, we obtain

− G(y′(t)) ∼ tp(t)F(y(t)) (5.45)

as t → ∞. Condition (5.41) is equivalent to LG(v(t)/t) ∼ LG(1/t) as t → ∞, for all
v ∈ SV. Hence,

−G(y′(t)) = −y′(t)LG(L|y′|(t)/t) ∼ −y′(t)LG(1/t)

as t→∞. Combining this relation with (5.45), we get

−y′(t)
F(y(t))

∼
tp(t)

LG(1/t)

as t→∞, that is
y′(t)

F(y(t))
= −(1 + o(1))H(t) (5.46)

as t→∞. By integrating this relation over (t0, t) we obtain

F̂(y(t)) = F̂(y(t0)) −
∫ t

t0

(1 + o(1))H(s) ds, (5.47)

which implies (5.42) provided
∫
∞

a H(s) ds = ∞. Clearly then y(t) → 0 as t → ∞,
otherwise we get a contradiction with the divergence of the integral in (5.47). If∫
∞

a H(s) ds < ∞ holds, then we integrate (5.46) over (t,∞) obtaining (5.43). In this
case, y(t) must tend to a positive constant as t→ ∞. Indeed, if y(t)→ 0 as t→ ∞,
then the left-hand side of (5.47) becomes unbounded which is a contradiction. �

Remark 5.6. A closer examination of the proof of Theorem 5.13 shows that the
condition limu→0+ |F̂(u)| = ∞ is somehow needed. Indeed, if we assume that this
limit is finite and that

∫
∞

a H(s) ds = ∞, then in view of (5.47) we get contradiction.
As a by-product we then have a non-existence of SV solutions. If limu→0+ |F̂(u)| <
∞ holds when

∫
∞

a H(s) ds < ∞, then no conclusion whether y(∞) = 0 or y(∞) > 0
can generally be drawn. Note that such phenomena cannot occur in the linear
case.
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Remark 5.7. There exists an alternative way how to prove (5.45). Indeed, denote
L̃(t) = Lp(t)F(y(t)) and observe that L̃ ∈ SV. Therefore,∫

∞

t
p(s)F(y′(s)) ds =

∫
∞

t
s−2L̃(s) ds ∼

1
t

L̃(t) = tp(t)F(y(t))

as t→∞ by the Karamata theorem. Since −G(y′(t)) =
∫
∞

t p(s)F(y(s)) ds, we obtain
(5.45).

Remark 5.8. Observe that to prove asymptotic formulae for decreasing SV so-
lutions of (5.34) we do not require (even one-sided) boundedness conditions on
LF and LG such as (5.38). As for condition (5.41) from Theorem 5.13, it is not too
restrictive. Many functions satisfy it, for example, LG(u) → C ∈ (0,∞) as u → 0+,
or LG(u) = | ln |u||α1 | ln | ln |u|||α2 , α1, α2 ∈ R. Compare also with (4.23).

The value −2 in the condition p ∈ RV(−2) is natural and consistent within our
setting. Indeed, since we work with SV solutions, the expression on the left-hand
side of (5.34), which is somehow close to the second derivative, is expected to be
in RV(−2).

Corollary 5.1. Assume that p ∈ RV(−2) and limt→∞ Lp(t) = 0. Let (5.38) and (5.41)
hold. Then any solution y ∈ DS belongs to NSV. Moreover, −y ∈ Π(−ty′(t)) and
asymptotic formulae (5.42) or (5.43) hold.

Proof. By the Karamata theorem,

t
∫
∞

t
p(s) ds = t

∫
∞

t
s−2Lp(s) ds ∼ Lp(t)→ 0

as t → ∞, and so (5.37) follows. Further, in view of lim supu→0+ LF(u) < ∞, exists
M > 0 such that we have for x < 1,

F̂(x) ≤ −
∫ 1

x

du
uM

=
ln x
M
,

which implies limx→0+ F̂(x) = −∞. The statement now follows from Theorem 5.12
and Theorem 5.13. �

Remark 5.9. Corollary 5.1 can be seen as a nonlinear extension of Theorem 2.11.

Example 5.1. Consider the equation

(y′LG(|y′|))′ =
Lp(t)y

t2| ln |y||
, (5.48)

where LG ∈ SV0 and Lp ∈ SV. Then F̂(x) =
−(ln x)2

2 , x ∈ (0, 1), F̂(x)→ −∞ as x→ 0+,
and F̂−1(u) = exp{−

√
−2u}, u < 0. We restrict our considerations to positive (de-

creasing) solutions y of (5.48) such that y(t) < 1 for t ≥ t0; we have this requirement
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because we need F(u) to be increasing at least in a certain neighborhood of zero
(here it is (0, 1)). Note that a slight modification of F, namely F(u) = x/| ln |x/k||,
k ∈ (0,∞), ensures the required monotonicity of F on the (possibly bigger) interval
(0, k).

(i) Let G(u) = u| ln |u|| and Lp(t) = 1
ln t+h(t) , where h is a continuous function on

[a,∞) with |h(t)| = o(ln t) as t → ∞, and such that ln t + h(t) > 0 for t ∈ [a,∞).
Examples of h are h(t) = cos t or h(t) = ln(ln t). Note that the required monotonicity
of G is ensured in a small neighborhood of zero But this is not a problem since
we have y′ as the argument of G, and y′(t) tends to zero as t → ∞. Nevertheless,
we could modify G similarly as in the above mentioned modification of F. The
function H reads as

H(t) =
1

t(ln t + h(t))| ln(1/t)|
=

1
t(ln t + h(t)) ln t

∼
1

t(ln t)2

as t → ∞. Thus,
∫
∞

H(s) ds < ∞ and we have
∫
∞

t H(s) ds ∼ 1
ln t as t → ∞. From

Corollary 5.1, we get that for any eventually decreasing positive solution y of (5.48)
(with y(t) < 1 for large t), −y is in Π (y is inNSV), y tends to y(∞) > 0 and satisfies
the formula

y(t) = exp

−
√

(ln y(∞))2 −
2(1 + o(1))

ln t


as t→∞.

(ii) Let Lp be the same as in (i) and G(u) = u
√

1±u2
. Then

H(t) =

√
1 ± 1

t2

t(ln t + h(t))
∼

1
t ln t

as t → ∞. Note that (ln(ln t))′ = 1
t ln t , and so

∫
∞

H(s) ds = ∞. From Corollary 5.1,
we get that for any eventually decreasing positive solution y of (5.48), −y is in Π
(y is inNSV), y tends to zero and satisfies the formula

y(t) = exp
{
−

√
(1 + o(1)) ln(ln t)

}
as t→∞.

(iii) Let Lp(t) = 1
(ln t+h(t))2 , where h is as in (i), and G = id. Then

H(t) =
1

t(ln t + h(t))2 ∼
1

t(ln t)2

as t→∞. Applying Corollary 5.1, we get that any eventually decreasing positive
solution y of (5.48) (with y(t) < 1 for large t) obeys the same asymptotic behavior
as y in (i).

Among others, the above examples show how the convergence / divergence of
the integral

∫
∞

H(s) ds can be affected by the behavior of both p and G.
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Under the conditions of Theorem 5.13-(i), it does not follow that

y(t) ∼ F̂−1
{
−

∫ t

a
H(s) ds

}
as t→∞; this fact was observed already in the linear case, see [45, Remark 2], see
also the text after Theorem 2.11. However, we can give a lower estimate under
quite mild assumptions. For technical reasons we consider positive decreasing
solutions (5.34) on [0,∞) (provided p ∈ C([0,∞)).

Theorem 5.14. (i) Let lim infu→0+ LG(u) > 0 and (5.37) hold. Then y ∈ DS ∩ SV
satisfies the estimate

lim inf
t→∞

y(t)

F̂−1
{
F̂(y(0)) −M

∫ t
0 sp(s) ds

} ≥ 1, (5.49)

where M is some positive constant. The constant M can be taken such that M =
1/ infu∈[0,|y′(0)|] LG(u).

(ii) In addition to the conditions in (i), assume that lim supu→0+ LF(u) < ∞ holds.
Then y ∈ DS implies y ∈ NSV and

lim inf
t→∞

y(t) exp
{

N
∫ t

0
sp(s) ds

}
≥ y(0),

where N is some positive constant. The constant N can be taken such that N =
supu∈[0,y(0)] LF(u)/ infu∈[0,|y′(0)|] LG(u).

Proof. (i) Take y(t) ∈ DS ∩ SV, t ≥ 0. For λ ∈ (0, 1), we have

−G(y′(λt)) + G(y′(t))
F(y(λt))

=
1

F(y(λt))

∫ t

λt
p(s)F(y(s)) ds ≤

∫ t

λt
p(s) ds, (5.50)

t > 0. Thanks to lim infu→0+ LG(u) > 0, there exists M > 0 such that

−y′(λt)
MF(y(λt))

+
G(y′(t))
F(y(λt))

≤
−y′(λt)LG(|y′(t)|)

F(y(λt))
+

G(y′(t))
F(y(λt))

≤

∫ t

λt
p(s) ds, (5.51)

t > 0, where the last estimate follows from (5.50). Integration over λ ∈ (0, 1) yields

−1
Mt

[F̂(y(t)) − F̂(y(0))] +
G(y′(t))

t

∫ t

0

ds
F(y(s))

≤
1
t

∫ t

0
sp(s) ds, (5.52)

where we substituted s = λt in
∫ 1

0
dλ

F(y(λt)) and we applied the Fubini theorem in∫ 1
0

∫ t
λt p(s) ds dλ. From (5.52), we get

y(t) ≥ F̂−1
{

F̂(y(0)) + MG(y′(t))
∫ t

0

ds
F(y(s))

−M
∫ t

0
sp(s) ds

}
. (5.53)
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Since F(y) ∈ SV, the Karamata theorem yields

0 < −G(y′(t))
∫ t

0

ds
F(y(s))

∼
−tG(y′(t))

F(y(t))

=
t

F(y(t))

∫
∞

t
p(s)F(y(s)) ds ≤ t

∫
∞

t
p(s) ds,

where the asymptotic relation holds as t→∞. Hence,

−G(y′(t))
∫ t

0

ds
F(y(s))

= o(1)

as t→∞. Formula (5.49) now easily follows from (5.53).
(ii) Take y(t) ∈ DS, t > 0. Then y ∈ NSV follows from Theorem 5.12. Thanks to

(5.38) which is in fact assumed, there exists N > 0 such that−NG(y′(λt))/F(y(λt)) ≥
−y′(λt)/y(λt), t > 0. As in the proof of (i), we then get

−y′(λt)
y(λt)

+
G(y′(t))
F(y(λt))

≤

∫ t

λt
p(s) ds.

Since this estimate is a special case of (5.51), the rest of the proof is now clear. �

Remark 5.10. It is reasonable to require the conditions limu→0+ |F̂(u)| = ∞ and∫
∞

0 sp(s) ds = ∞ when applying Theorem 5.14. Further notice that the proof of
Theorem 5.14 does not require p ∈ RV(−2), in contrast to the approach known
from the linear case, cf. [45, Remark 2]. From this point of view, the result is an
improvement even in the linear case. Nevertheless, in order to see Theorem 5.14
as a partial refinement of information about solutions treated in Theorem 5.13-(i),
it is reasonable to assume p ∈ RV(−2).

We now consider more general equation

(r(t)G(y′))′ = p(t)F(y), (5.54)

where r and p are positive continuous functions on [a,∞) and F,G are as before.
First note that in the case when G = id and

∫
∞

a 1/r(s) ds = ∞, equation (5.54) can
be transformed into the equation of the form (2.1) and the type of the interval (on
which the equation is considered) is preserved. Indeed, denote R(t) =

∫ t
a 1/r(s) ds

and introduce new independent variable s = R(t) and new function z(s) = y(R−1(t)).
Then (5.54) is transformed into

d2z
ds2 = p̃(s)F(z), where p̃(s) = p(R−1(s))r(R−1(s)),

s ∈ [R(a),∞). For a general G however such a transformation is not at disposal,
and we must proceed directly. Let DSr denote the set of all eventually positive
decreasing solutions of equation (5.54). An extension of Theorem 5.12 to (5.54)
reads as follows.
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Theorem 5.15. Assume that

lim
t→∞

t
r(t)

∫
∞

t
p(s) ds = 0, (5.55)

lim supu→0+ LF(u) < ∞, ∫
∞

a
G−1

(
M
r(s)

)
ds = ∞ (5.56)

for all M ∈ (0,∞), and LG(u) ≥ N, u ∈ (0,∞), for some N > 0. Then ∅ , DSr ⊂ NSV.

Proof. We give only a concise proof. Existence of solutions in DSr again follows
from [20]. Take y ∈ DSr. Then r(t)G(y′(t)) → 0 as t → ∞. Otherwise we get
contradiction with eventual positivity of y, because of condition (5.56). Similarly
as in the proof of Theorem 5.12 we get that there exists K ∈ (0,∞) such that

−ty′(t)
y(t)

≤
tLF(y(t))

LG(|y′(t)|)r(t)

∫
∞

t
p(s) ds ≤

tK
r(t)

∫
∞

t
p(s) ds

for large t. Hence, y ∈ NSV. �

For p ∈ RV(β) and r ∈ RV(β + 2) with β < −1, denote

Hr(t) =
tp(t)

(−β − 1)r(t)

and note that then Hr ∈ RV(−1). An extension of Theorem 5.13 to (5.54) reads as
follows.

Theorem 5.16. Assume that p ∈ RV(β) and r ∈ RV(β + 2), with β < −1. Further, let
limu→0+ |F̂(u)| = ∞ and (5.41) hold. If y ∈ DSr∩SV, then −y ∈ Π(−ty′(t)). Moreover:

(i) If
∫
∞

a Hr(s) ds = ∞, then (5.42) with Hr instead of H holds and y(t)→ 0 as t→∞.
(ii) If

∫
∞

a H(s) ds < ∞, then (5.43) with Hr instead of H holds and y(t) → y(∞) ∈
(0,∞) as t→∞.

Proof. We give again only a concise proof. Take y ∈ DSr ∩ SV. Then (rG(y′))′ ∈
RV(β). Hence, −rG(y′) ∈ RV(β + 1), as so −y′ ∈ RV(−1), which implies −y ∈
Π(−ty′) by (5.44). If L̃ = LpF(y), then L̃ ∈ SV and we have

−r(t)y′(t)LG

(1
t

)
∼ −r(t)G(y′(t)) =

∫
∞

t
p(s)F(y(s)) ds =

∫
∞

t
sβL̃(s) ds

∼
tβ+1

−(β + 1)
L̃(t) =

t
−(β + 1)

p(t)F(y(t))

as t → ∞, where we applied the Karamata theorem. Asymptotic formulae then
follow similarly as (5.42) and (5.43) in the proof of Theorem 5.13. �
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Remark 5.11. If p ∈ RV(β), β < −1, and r ∈ RV(β + 2), then (5.55) holds provided
Lp(t)/Lr(t)→ 0 as t→∞. Indeed, by the Karamata theorem we have,

t
r(t)

∫
∞

t
p(s) ds ∼

tLp(t)tβ+1

−(β + 1)tβ+2Lr(t)
=

Lp(t)
−(β + 1)Lr(t)

as t→∞, and the claim follows.

Remark 5.12. Assume that p ∈ RV(β) and r ∈ RV(β + 2) with β > −1. Recall
that in the previous theorem we assumed β < −1. Take y ∈ DSr ∩ SV. Then
we get

∫
∞

a p(s)F(y(s)) ds = ∞ since the index of regular variation of pF(y) is bigger
than −1. Integrating (5.54) from t0 to t, where t0 is such that y(t) > 0, y′(t) < 0,
t ≥ t0, we obtain r(t)G(y′(t)) = r(t0)G(y′(t0)) +

∫ t
t0

p(s)F(y(s)) ds. Hence, if we let
t tend to ∞, then r(t)G(y′(t)) tends to ∞. Thus y′ is eventually positive, which
contradicts y ∈ DSr. In other words, this observation indicates that SV solutions
should not be searched among DSr solutions in this setting. We conjecture that
we should take an increasing solution in order to remain in the set SV. Of
course, some logical adjustments then have to be made, like taking RV instead
of RV0 in (5.35). As for DSr, we conjecture that this class somehow corresponds
to RV(−1) solutions. Note that the integral

∫
∞

a 1/r(s) ds (which is “close” to the
integral

∫
∞

a G−1(M/r(s)) ds) is divergent for β < −1 resp. convergent for β > −1
since 1/r ∈ RV(−β − 2).

We have not mentioned the remaining possibility so far, namely β = −1. This
border case is probably the most difficult one, and surely will require a quite dif-
ferent approach. The direct use of the Karamata theorem is problematic in contrast
to the corresponding situations in other cases. If p ∈ RV(−1) and r ∈ RV(1), we
cannot even say whether

∫
∞

a p(s) ds,
∫
∞

a 1/r(s) ds are convergent or divergent. In
fact, the situation is more tangled because of presence of nonlinearities F,G, where
SV components LF,LG are supposed to have a stronger effect than in the case
β , −1.

As a conclusion of this section, we indicate some further directions for a pos-
sible future research. Asymptotic theory of nearly linear equations offers many
interesting questions. This section contains some answers but there are many is-
sues which could be followed further. There is also some space for improving the
presented results. We conjecture that the results can be generalized in the sense of
replacing condition (5.35) by F(| · |),G(| · |) ∈ RV0(γ), γ > 0, which would lead to a
“nearly half-linear equation.” It is expected that — within our setting, with taking
RV instead of RV0 in (5.35) — increasing solutions of (5.34) are in RV(1) and
asymptotic formulae can be established. In contrast to the linear case, a reduction
of order formula is not at disposal. A topic which would also be of interest is
to obtain more precise information about SV solutions of (2.1), for instance, by
means of the class ΠR2, cf. Theorem 2.13.
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Chapter 6
Concluding remarks

It is evident that many other works can be found in which the theory of regularly
varying (or of somehow related) functions is applied to study differential equations
(or dynamic equations). However, the aim of this text is such that it cannot cover
everything (and with details). In the last chapter we briefly mention at least few
another works.

6.1 More on differential equations in the framework
of regular variation

Appleby in [4] considers the rate of convergence to equilibrium of Volterra inte-
grodifferential equations with infinite memory. It is shown that if the kernel of
Volterra operator is regularly varying at infinity, and the initial history is regu-
larly varying at minus infinity, then the rate of convergence to the equilibrium is
regularly varying at infinity, and the exact pointwise rate of convergence can be
determined in terms of the rate of decay of the kernel and the rate of growth of the
initial history. The result is considered both for a linear Volterra integrodifferential
equation as well as for the delay logistic equation from population biology.

The concept of subexponential functions (which are somehow related to RV
functions) is used, for instance, by Appleby, Györi, and Reynolds in [5]; the paper
examines the asymptotic behavior of solutions of scalar linear integro-differential
equations. See also Appleby, Reynolds [8, 7].

Regular variation was used by Marić, Radašin in [109] to study equations
arising in boundary-layer theory, see also [105, Chapter 4]. The core of such
considerations is based on the work by McLeod [118]. Van den Berg in [15]
established a result on the asymptotics of some solutions to a first order nonlinear
differential equation; a conspicuous feature of his consideration is its relation to
the nonstandard asymptotic analysis.

Several papers exist devoted to investigation of second order equations with
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deviating argument in the framework of regular variation, see Kusano, Marić
[95, 96, 97, 98] for linear case and Kusano, Manojlović, Tanigawa [92] and Tanigawa
[161, 163] for half-liner case. Note that the last mentioned paper utilizes the concept
of generalized regular variation. Common features of these works are that a
crucial role is played by the results for equations without retarded and advanced
arguments which can be seen as modifications of some theorems in Chapters 2
and 3. A desired solution is then obtained by the fixed point technique.

6.2 Regularly varying sequences and difference
equations

As mentioned in Subsection 1.3.3, the concept of regularly varying sequences was
introduced already by Karamata. Much later this theory was used to study asymp-
totic properties of linear and half-linear difference equations in Matucci and Řehák
[119, 120, 121, 122], discrete versions of some of the statements from Chapters 2
and 3 can be revealed there. It should however be emphasized that the discrete
case requires to find new ways of the proofs at many points. A somewhat different
approach to the use of regularly varying sequences in linear difference equations
is represented by Kooman [81], see also related paper by Kooman [80]. Second
order Emden-Fowler type difference equations is investigated in the framework of
regular variation in [1] by Agarwal and Manojlović. Other approach in the study
of Emden-Fowler type difference equations is represented by the papers [76, 77, 78]
of Kharkov. Some considerations in Kharkov’s papers can be seen as a discrete
analogues of the results by Evtukhov et al., see e.g. Subsection 4.3.7.

6.3 Regular variation on time scales and dynamic
equations

The concept of regularly varying functions on time scales (or measure chains) is
introduced in [141] by Řehák in order to study asymptotic behavior of dynamic
equations (which unify and extend differential and difference equations), see Sub-
section 1.3.3. Other applications to linear and half-linear dynamic equations on
time scales can be found in Řehák and Vı́tovec [152, 153]. The results can be viewed
as a unification and extension of some of the statements from Chapters 2 and 3 and
corresponding statements for difference equations. Note that an important role is
played by an additional condition on the graininess µ(t); it is somehow necessary
to assume that µ(t) = o(t) as t→∞.

6.4 q-regular variation and q-difference equations

The concept of q-regularly varying functions was introduced in [151] by Řehák
and Vı́tovec in order to study asymptotic behavior of q-difference equations, see
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Subsection 1.3.3. Linear q-difference equations in the framework of this theory
are studied in Řehák [142, 144]. Half-linear q-difference equations are studied in
[143] Řehák and Vı́tovec [154]. These results can be understood as a q-version of
some of the statements from Chapters 2 and 3. It is worthy of note that a specific
approach is used for q-difference equations; this is due to pleasant properties of
q-regularly varying functions. Certain generalization of q-regular variation was
introduced in Řehák [145] and applied in the study of general linear second order
q-difference equations. See also Řehák [148] where the classical Poincaré-Perron
type result was applied to examine generalized q-regularly varying solutions of
n-th order linear q-difference equations.
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des intégrales définies (French), Acad. Serbe Sci. Publ. Inst. Math. 7 (1954),
81–94.

[3] J. A. D. Appleby, E. Buckwar, A constructive comparison technique for deter-
mining the asymptotic behaviour of linear functional differential equations
with unbounded delay, Differ. Equ. Dyn. Syst. 18 (2010), 271–301.

[4] J. A. D. Appleby, On regularly varying and history-dependent convergence
rates of solutions of a Volterra equation with infinite memory, Adv. Difference
Equ. 2010, Art. ID 478291, 31 pp.
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[60] J. Jaroš, T. Kusano, Self-adjoint differential equations and generalized Kara-
mata functions, Bull. Cl. Sci. Math. Nat. Sci. Math. 29 (2004), 25–60.
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Bull. Soc. Math. France 61 (1933), 55–62.

[76] V. Kharkov, Asymptotic behavior of a class of solutions of second-order
Emden-Fowler difference equations, Difference equations and applications,
Ugur-Bahcesehir Univ. Publ. Co., Istanbul, 2009, 219–226.



Bibliography 201

[77] V. Kharkov, Asymptotic representations of a class of solutions of a second-
order difference equation with a power nonlinearity (Russian), Ukrain. Mat.
Zh. 61 (2009), 839–854; translation in Ukrainian Math. J. 61 (2009), 994–1012

[78] V. Kharkov, Positive solutions of the Emden-Fowler difference equation, J.
Difference Equ. Appl. 19 (2013), 234–260.

[79] I. T. Kiguradze, T. A. Chanturiya, Asymptotic properties of solutions of
nonautonomous ordinary differential equations, Mathematics and its Ap-
plications 89, Kluwer Acad. Pub., Dordrecht, 1993.

[80] R. J. Kooman, Asymptotic behaviour of solutions of linear recurrences and
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[83] T. Kusano, J. Manojlović, V. Marić, Increasing solutions of Thomas-Fermi
type differential equations—the sublinear case, Bull. Cl. Sci. Math. Nat. Sci.
Math. 36 (2011), 21–36.
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[109] V. Marić, Z. Radašin, Regularity and asymptotics of a similarity solution of
an equation arising in boundary layer theory, World Congress of Nonlinear
Analysts ’92, Vol. I–IV (Tampa, FL, 1992), 1469–1473, de Gruyter, Berlin,
1996.
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[122] S. Matucci, P. Řehák, Regularly varying solutions of second order difference
equations with arbitrary sign coefficient, Advances in Difference Equations,
vol. 2010, Article ID 673761, 16 pages, 2010.

[123] S. Matucci, P. Řehák, Asymptotics of decreasing solutions of coupled p-
Laplacian systems in the framework of regular variation, to appear in Ann.
Mat. Pura Appl.
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[153] P. Řehák, J. Vı́tovec, Regular Variation on Measure Chains, Nonlinear Anal.
72 (2010), 439–448.

[154] P. Řehák, J. Vı́tovec, q-Karamata functions and second order q-difference
equations, E. J. Qualitative Theory of Diff. Equ. 24 (2011), pp. 1–20.

[155] M. Rosenlicht, Hardy fields, J. Math. Anal. Appl. 93 (1983), 297–311.

[156] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics 508,
Springer-Verlag, Berlin-Heidelberg-New York, 1976.

[157] Swanson, C. A. Comparison and oscillation theory of linear differential equa-
tions. Mathematics in Science and Engineering, Vol. 48. Academic Press,
New York-London, 1968.

[158] S. D. Taliaferro, Asymptotic behavior of solutions of y′′ = φ(t) f (y), SIAM J.
Math. Anal. 12 (1981), 853–865.



Bibliography 207

[159] S. D. Taliaferro, Radial symmetry of positive solutions of nonlinear elliptic
equations, J. Differential Equations 156 (1999), 219–253.

[160] S. D. Taliaferro, Asymptotic behavior of positive decreasing solutions of y′′ =
F(t, y, y′), Geometric analysis and nonlinear partial differential equations
(Denton, TX, 1990), 105—127, Lecture Notes in Pure and Appl. Math., 144,
Dekker, New York, 1993.

[161] T. Tanigawa, Regularly varying solutions of half-linear functional differential
equations with retarded arguments, Acta Math. Hungar. 120 (2008), 53–78.

[162] T. Tanigawa, Positive decreasing solutions of systems of second order quasi-
linear differential equations, Funkcial. Ekvac. 43 (2000), 361–380.

[163] T. Tanigawa, Generalized regularly varying solutions of second order non-
linear differential equations with deviating arguments, Mem. Differential
Equations Math. Phys. 57 (2012), 123–162.

[164] L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc.
23 (1927), 542–548.

[165] E. C. Titchmarsh, Eigenfunction expansions associated with second-order
differential equations, Part I, Second Edition, Clarendon Press, Oxford 1962.

[166] D. Willett, Classification of second order linear differential equations with
respect to oscillation, Advances in Math. 3 (1969) 594–623.
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