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Preface

This text deals particularly with nonlinear differential equations which are exam-
ined with the help of regular variation. It was created within the A-Math-Net
project, and its primary purpose is to serve as a textbook for (almost) graduate
students. But it can be useful also for experts or for anybody who is interested in
asymptotic theory of differential equations.

The theory of regularly varying functions has been shown very useful in some
fields of qualitative theory of differential equations, see, in particular, the important
monograph by Mari¢ [105] summarizing themes in the research up to the year
2000. This book served as an excellent source for our text, but of course, much
material is taken also from other sources. Actually, our treatise includes many of
the results that appeared after Mari¢’s book. Moreover, it reveals new relations
among various results, and revise some of them.

In view of the main aim of this text, we cannot give a complete treatment with
all details. We rather focus on presenting a wide variety of methods which shows
how powerful tool regular variation is. For reference purposes we present brief
comprehensive surveys of sub-themes.

The first chapter summarizes useful information about regularly varying func-
tions and related concepts. Our style of treatment with this topic is affected by
requirements on applications in differential equations.

Although this text is focused on nonlinear equations, there is a big part (Chap-
ter [2) which deals with linear differential equations. We offer a comprehensive
survey of the results in which linear differential equations are studied in the frame-
work of regular variation. Proofs are given only exceptionally, but we present
many comments which sometimes include a description of the main ideas. The
objective of this chapter is multiple. Some of the linear results are used in the
nonlinear theory, thus we can easily refer them. Some of the results are extended
to a nonlinear case, thus we can easily make a comparison; at the same time, some
of the statements in Chapter 2l may serve as a motivation for an extension (which
has not been made yet) to a nonlinear case. Moreover, our survey includes also the
results which are not contained in the above mentioned Mari¢’s book (especially
the recent ones), and we point out relations among various results.
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Chapter 3| deals with second-order half-linear differential equations in the
framework of regular variation. The most of the results can be understood as
a half-linear extension of some of the statements from Chapter 2l But this part
offers more, especially as far as the methods are concerned. Indeed, many steps in
the proofs require a quite new approach or at least a highly nontrivial modification
comparing with the existing linear case.

Emden-Fowler type equations are examined in Chapter[d We consider various
types of such objects, second order equations, higher order equations, but also
systems. Older as well as recent results are presented. Concerning recent results,
because of their big amount, we give only a brief (but quite comprehensive) survey
which is followed by a detailed description of several selected results. We try to
make make a selection in such a way which shows a variety of typical approaches.

Chapter[fis devoted to investigation of some other nonlinear differential equa-
tions where the theory of regular variation has been shown to be helpful. We deal
with equations which involve a generalized Laplacian, partial differential equa-
tions, a class of third order nonlinear equations, perturbed first order equations,
and second order nearly linear equations.

The last chapter briefly discusses utilization of regular variation in some other
differential (or integral) equations; among others, equations with deviating argu-
ments are mentioned. Further, it offers a short survey of the literature devoted to
examination of difference equations, g-difference equations, and dynamic equa-
tions on time scales in the framework of regular variation.

Preparation of this text was supported by the project A-Math-Net (Applied
Mathematics Knowledge Transfer Network), No. CZ.1.07/2.4.00/17.0100.

I would like to express my thanks to Robert Mafik and Marek Sas for reading
the manuscript and useful comments.

Pdf version of this text can be found on http://www.amathnet.cz/ or on
users.math.cas.cz/ "rehak/ndefrv.

Pavel Rehak
Brno, February 2014
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Notation and convention

O O O O

o

O O O O O o o

[¢]

(e]

RV (9): regularly varying functions (at infinity) of index § [Section[L.1]

SV: slowly varying functions (at infinity) [Section

RB: regularly bounded functions (at infinity) [Section

RPV(+00): rapidly varying functions (at infinity) of index +oco [Section[L.1]
NRYV(8): normalized regularly varying functions (at infinity) of index ¥ [Sec-
tion [1.1]]

NSV (9): normalized slowly varying functions (at infinity) of index ¥ [Sec-
tion [1.1]]

tr-RV(9): trivial regularly varying functions (at infinity) of index 9 [Section[L.1]
SVy: slowly varying functions at zero, similarly for RV,(9), RPVo(£), RBo,
tr-RVo(9) [Section

RV: the class of all regularly varying functions (at infinity), similarly for RV,
RPV, RPVy, tr-RYV tr-RVp;

“RYV” sometimes may mean the abbreviation of “regularly varying”, similarly
for SV, RPV, RB etc. [Section[L.1]]

Karamata functions: RV U RPYV [Section[1.1]

f: generalized inverse of f [Section [1.1]]

IT(w): class ITin the de Haan sense with auxiliary function w [Section [1.2]]

I'(w): class I in the de Haan sense with auxiliary function w [Section

IR (w, z): Omey-Willekens type functions [Section [I.2]

BSYV: Beurling slowly varying functions [Section[I.2]

SN: self-neglecting functions [Section

RV »(9): (generalized) regularly varying functions (at infinity) with respect to
w of index 9, similarly for SV, RPV,(x), RB,, NRYV,, [Subsection[1.3.1]]
L¢: slowly varying component of f € RV, i.e., L¢(t) = ft/t° for f € RV(I).
~,=,0,0: For eventually positive functions f, g, we denote:

f(t) ~ g(t) if limy—,00 f(1)/g(F) =1,
f(t) =< g(t)if Ac1,c2 € (0, 00) s. t. c18(t) < f(f) < c2g(t) for large ¢,
f(t) = o(g(®)) if lim;o f(£)/g(t) = 0,
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f(t) = O(g(t)) if Ac € (0, 00) s. t. f(t) < cg(t) for large t.

o We adopt the usual conventions: H]]:l uj=1and Z]]:; uj=0.

o ®,P,: The notation ®(u) is typically used in connection with half-linear equa-
tions and means ®@(u) = [u|*"! sgnu with a > 1. The notation @, (u) is typically
used in connection with Emden-Fowler type equations and means ®,(u) =
lul! sgnu with A > 0.

Notice that the powers are shifted by 1, but since a starts from 1 while A starts
from 0, the functions are practically the same. We decide to use such convention
in accordance with some literature.



Chapter

Regular variation

The subject of regular variation as we use the term today was initiated by Jovan
Karamata in a famous paper of 1930 [74], see also [73,[75]], though preliminary or
partial treatments may be found in earlier work of Landau in 1911, Valiron in 1913,
Pélya in 1917, Schmidt in 1925, and others.

In its basic form, regular variation may be viewed as the study of relations such
as

AL — g(A) €(0,00) (t > 0) YA>O,

f(®)

together with its numerous ramifications. This study is referred to as Karamata
theory. More general than the relation above is

f(AD) = f()

The study of relations of this kind is referred to as de Haan theory.

Mathematically, regular variation is essentially a field in classical real variable
theory, together with its applications in integral transforms — Tauberian theorems,
probability theory, analytic number theory, complex analysis, differential equa-
tions, and elsewhere.

Our style of dealing with regular variation in this chapter is designed for the
purpose to study asymptotic behavior of differential equations.

A quite comprehensive treatment of regular variation can be found in the book
by Bingham, Goldie, and Teugels [14]; much of material presented in this chapter
can be found (and is proved) in that book. Other main sources for this chapter are
the book by Seneta [156], the book by Geluk and de Haan [47], and the thesis by
de Haan [50]. Several useful concepts and statements are taken from some papers
on differential equations.

13



14 Section 1.1

1.1 Karamata theory

1.1.1 Basic concepts

We start with two essential definitions.
Definition 1.1. A measurable function f : [4, o) — (0, o) is called regularly varying

(at infinity) of index 9 if
i SO

t—oo0 f(t)

for every A > 0; we write f € RV(9). The class of all regularly varying functions
is denoted as

=A% (1.1)

RY = U RYV(9).
SeR

Definition 1.2. A measurable function L : [4, 00) — (0, o) is called slowly varying
(at infinity) if
L(At)

we write L € SV.

A slowly varying function is customarily denoted by L because of the first letter
of the French “lentement” which means “slowly”; note that the foundation papers
by Karamata were written in French.

It is clear that SV = RV(0). Consequently, the set of slowly varying functions
forms a subset of the set of regularly varying ones. This however might be some-
how misleading statement, since the class of slowly varying functions is the one
which presents itself, due to wealth of interesting properties, as a major novelty in
the classical analysis and applications. In the sequel the term “regularly varying
functions” sometimes will include the slowly varying ones and sometimes not.
The context, however, will prevent any ambiguity.

It is known that the conditions in the definition of RV functions can be weak-
ened. Indeed, the limit relation in is sufficient to hold only for A in a set of
positive measure and then the regular variation follows. Moreover, if the limit

fay _
© flt)

exists for A in a set of positive measure, then g necessarily takes the form g(A) =
where 9 is some real number.

It is easy to show that f € RV(9), 9 € R, if and only if it can be written in the
form

Lim 8(A) € (0, )

f(t) = t°L(t), where L € SV. (1.3)

Thus, for most purposes, to study regular variation, it suffices to study the prop-
erties of slowly varying functions.
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Here are some examples of slowly varying functions:

n
L(t) = H(lni t)#i, where In;t = Inln;_ t and y; € R,
i=1
n
L(t) = exp {H(lni t)v’} , Where 0 <v; <1,
i=1
L(t) =2 + sin(Iny £),
L®) = (nT®)/t,

11
L(t)—?fa‘EdS,

L(t) = exp {(ln t)% cos(In t)%} .

The last example shows the SV function which exhibits “infinite oscillation”, i.e.,
liminf; e L(t) = 0, limsup,_, , L(t) = co. This phenomenon can be somewhat in a
contrast with the intuitive notion of a “slowly varying” behavior and it reveals that
the class RV includes a wide variety of functions. In particular, slowly varying
functions do not need to be monotone eventually. Itis clear that the power function
t¥ is a trivial example of regularly varying function (of index 9), but for 9 # 0, we
have t° ¢ SV. The exponential functions exp t, exp(—t) are not regularly varying
at all. But, for example, 1 + exp(~t) is slowly varying. Undamped oscillatory
functions such as 2 + sin t are not slowly or regularly varying. It is interesting to
observe that while 2 + sin(In t) is not slowly varying, the function 2 + sin(Iny ¢) is
slowly varying.

Some authors speak about the class of trivial reqularly varying function of index
9, we write tr-RV(9), where f € tr-RV(9) if

f(t) ~Ct® ast— oo,
C being some positive constant; we consider a positive measurable f. We denote

tr-RV = U tr-RV(9).
SeR

We have, f € tr-RV(9), if and only if
f(t) = t°h(t) where h(t) ~ C € (0,00) as t — oo,

cf. (L.3). It is clear that tr-RV c RV. Thus, regular variation of a function can be
understood as a (one-sided, local) asymptotic property which arises out of trying
to extend in a logical and useful manner the class of functions whose asymptotic
behavior is that of a power function, to functions where asymptotic behavior is
that of a power function multiplied by a factor which varies “more slowly” than a
power function. As examples of slowly varying functions show, such an extension
is far from being trivial.
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We have defined regular variation at infinity. Of course, this is not the only
possibility. A measurable function f : (0,a] — (0, o) is said to be reqularly varying
at zero of index 9 if lim;_,0+ % = A® for every A > 0; we write f € RV(9). Since
regular variation of f(-) at zero of index ¥ means in fact regular variation of f(1/t)
at infinity of index —9, properties of RV functions can be easily deduced from
theory of RV functions. Regular variation can now be defined at any finite point
by shifting the origin of the function to this point. It is thus apparent that it suffices
to develop the theory of regular variation at infinity, which we shall do, frequently
omitting the words “at infinity” in the sequel. For example, —In t is slowly varying
att = 0+, Int is slowly varying at t = 1+, —Int is slowly varying at t = 1—, and
—In(1 - t) is slowly varying at t = 1.

In connection with investigation of solutions to some differential equations,
the concept of nearly regularly varying functions was introduced: If a positive
continuous function f satisfies f(f) < g(t) as t — oo for some g € RV(9), then f is
called a nearly reqularly varying function of index 3.

1.1.2 Uniform convergence and representation

The following result (the so-called Uniform Convergence Theorem) is one of the
most fundamental theorems in the theory. Many important properties of RV
functions follow from it.

Theorem 1.1. If f € RV(S), then the relation (and so (1.2)) holds uniformly on
each compact A-set in (0, 00).

The second fundamental result is the following Representation Theorem. It
follows from the previous result and vice versa.

Theorem 1.2. A function L is slowly varying if and only if it has the form

t
L(t) = p(t) exp {f @ ds} , (1.4)

t > a, for some a > 0, where @,y are measurable with lim;_,., p(t) = C € (0, 00) and
lim; o PP(t) = 0.

Since L, ¢, 1) may be altered at will on finite intervals, the value of a4 is unim-
portant; if 2 = 0 one can take ) = 0 on a neighborhood of 0 to avoid divergence of
the integral at the origin. In view of (1.3), a function f € RV(9) may be written as

t
@ ds} , (1.5)

where ¢ and i are as in the theorem. Alternatively, f € RV(9) if and only if it has

the representation
i)
ﬂﬂ=wnap{f—?d%, (16)

ﬂo=ﬁwﬂwp{

a
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where 6 is measurable with lim;_,, 6(t) = 9.

The Karamata representation is essentially non-unique: within limits,
one may always adjust one of ¢(-), ¥(-), making a compensating adjustment to
the other. It turns out that the function ¢ may be arbitrarily smooth, but the
smoothness properties attainable for ¢ ale limited by those presentin L. However,
replacing ¢(t) by its limit C € (0, o), we obtain a SV function which is asymptotic
to the original one, but with much enhanced properties; this topic will be discussed
also later.

Asalready indicated above, from some points of view (for instance, the measur-
ing of scales of growth like in studying asymptotic behavior of relevant functions),
slowly varying functions are of interest only to within an asymptotic equivalence.
We then lose nothing by restricting attention to the case ¢(t) = C in (1.4) or (1.5) or
(1.6). The following definition is pertinent to this situation.

Definition 1.3. The regularly varying function of index §

t
f(t) = t°Cexp { f @ ds}, (1.7)

lim; e YP(t) = 0, C € (0, 00), is called normalized; we write f € NRV(9). The set of
normalized slowly varying functions, i.e., NRV(0), is denoted as NSV.

For L € NSV, ¢(t) = tL'(t)/L(t) almost everywhere. Conversely, given a
function L with 1(t) := tL’(t)/L(t) continuous and o(1) at infinity, we may integrate
to obtain (1.7), showing L to be normalized slowly varying.

The class NSV coincides with the so-called Zygmund class which is defined
as follows: A positive measurable function f belongs to the Zygmund class if, for
every 9 >0,

t¥ f(t) is ultimately increasing and +° f(f) is ultimately decreasing.

1.1.3 Karamata theorem

As we will see later, the results of this subsection are extremely useful in applica-
tions to the theory of differential equations.

Theorem 1.3 (Karamata’s theorem; direct half). If L € SV, then

f s°L(s)ds ~ ! L) (1.8)
f —C-1
provided C < =1, and

t
C L
fa s°L(s)ds an 1t L(t) (1.9)

provided C > —1. The integral fa “ L(s)/s ds may or may not converge. The function

0o t
L(t) = ft LO) 45 resp. L(t) = f @ds (1.10)

S
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is a new SV function and L(t)/L(t) — 0 as t — oo.

We shall see in Section[I.2]that actually the integral in (1.10) is, more precisely,
a de Haan function, to be defined in that section. For later use, it can be convenient
to write the above theorem in a slightly different form.

Theorem 1.4. Let f € RV(C) and be locally bounded in [a, c0). Then
(i) Forany o < —(C+ 1) (and for 0 = —=(C+ 1) if [ s7 @V f(s)ds < o),

o+1 ~ o ds —» — 1 — oo;
t f(t)/j: s7f(s)ds (c+C+1)ast

(ii) for any o > —(C+ 1),

t
t‘”lf(t)/f s7f(s)ds > o+ C+1 ast — oo.

The above theorems tell us in detail how SV functions behave when multiplied
by powers and integrated. It is a remarkable fact that such behavior can only arise
in the case of regular variation.

Theorem 1.5 (Karamata’s theorem; converse half). Let f be positive and locally
integrable in [a, co).
(i) If for some 0 < —(C + 1),

o+1 oocr ds —» — — 00
tf(t)/ftsf(s)s (0+C+1)ast— oo,

then f € RV(C). (i) If for some o > —(C + 1),

t
t0+1f(t)/f s7f(s)ds » o+ C+1last — oo,
then f € RV(0).

1.1.4 Monotonicity

Various aspects of the theory of regular variation are simplified if the functions in
questions are assumed monotone. For instance:

o If L is eventually positive and monotone and there exists Ag € (0, o) \ {1} with

. L(Aot)
IO

=1,

then L € SV.
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[¢]

@]

If f is eventually positive and monotone and

fan
im=e ©

for all A in some dense subset of (0, o) or just for A = Ay, Ax with (InA;)/In A,
finite and irrational, then f € RV.

8(A) € (0, 0)

A monotone positive function f is RV if and only if there exist two sequences
{cu} and {a,} of positive numbers with

such that for all positive A
lim ¢, f(Aay)
n—oo0

exists, is positive and finite.

1.1.5 Further selected properties of RV functions

(¢]

If f € RV(), then Inf(t)/Int — 9 ast — oco. It then clearly implies that
lim;_, f(t) = 0 provided 9 < 0, and lim;_, f(t) = oo provided 9 > 0.

If f € RV(I), then f* € RV(aV) for every a € R.

If fi e RV(D:),i=1,2, fo(t) > o0 ast — oo, then f; o fo € RV (9197).
If fi € RV(D)),i=1,2,then f1 + fo € RV(max{91, I2}).

If fi € RV(D)),i=1,2,then fi o € RV(S1 + I).

If fi,...,fu € RV, n €N, and R(xy,...,x,) is a rational function with positive
coefficients, then R(fy, ..., fu) € RV.

If L €SV and 9 > 0, then t°L(t) — oo, t °L(t) = 0 as t — oo.

Let f be eventually positive and differentiable, and let

)
iy =

Then f € NRV(9).

If f € RV(S) withd <0and f(t) = ftoo g(s) ds with ¢ nonincreasing, then

(1) _ tg(t)
f) f(t)

— —9 ast — oo.
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o If f e RV(I) withd > 0and f(t) = f(to) + ft; g(s) ds with ¢ monotone, then

tf'(t) _ tg()

—— > 9 ast— oo.

ft £

o (Similar to the above ones but much earlier results.) If the derivative of L € SV
is monotone, then tL'(t)/L(t) — 0 as t — oo.

Suppose that F € RV(9) with 9 € R and that there exists a monotone function f
such that for all positive ¢, F(t) = fot f(s)ds. Then

. ()
fmFn =%

Hence, for 9 # 0, it holds fsgnd € RV(S —1).

o (Almost monotonicity) For a positive measurable function L it holds: L € SV
if and only if, for every 9 > 0, there exist a (regularly varying) nondecreasing
function F and a (regularly varying) nonincreasing function G with

L) ~F(t) L) ~ G(t)  ast — oo.

In particular, if L € SV and § > 0, tOL(t) is asymptotic to a nondecreasing
function, +~°L(t) to a nonincreasing one. Or, a regularly varying function of
index 9 # 0 is almost monotone. Recall that a positive function f is called
almost increasing on [a, o) if for some constant M > 0, f(s) > f(Mt), s >t > a.
We may write f(t) = O(infss f(t)) or even f(t) < infs; f(s). Similarly we define
an almost decreasing function f; then we have f(t) < sup,., f(t).

o (Asymptotic inversion) If g € RV(3) with § > 0, then there exists g € RV(1/9)
with
f(g(t) ~ g(f(H)) ~t ast— .

Here g (an “asymptotic inverse” of f) is determined uniquely up to asymptotic
equivalence. One version of g is the generalized inverse

f(t) ;= inf{s € [a, 00) : f(s) > t}.

o (de Bruijn conjugacy) If L € S8V, there exists L* € SV, unique up to asymptotic
equivalence, with

L(OL*(tL(t) — 1, L*@LELH* (1) — 1

ast — oo. Then L*¥ ~ L. The function L* is the Bruijn conjugate of L; (L,L*) is a
conjugate pair.
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o (Smooth variation) First we give definition of the class SRV: A positive function
varies smoothly with index 9 € R, we write f € SRV(9), if h(t) := In f(e) is C,
and

Wit)— 9, W) -0 (n=2,3,...) ast — oo. (1.11)

If f € RV(), then there exist f1, o € SRV(S) with 1 ~ hand i < f < fo
on some neighborhood of infinity. In particular, if f € RV(9), there exists
g € SRV(I) with ¢ ~ f. Thus for many purposes it suffices to restrict attention
to the smoothly varying case.

Note that if f € SRV(9), then tf’'(t)/f(t) = W (Int) — O and is continuous,
whence f € NRV(8). Condition is equivalent to

£ FO(t)
f®

n=12...,ast — co. Smooth variation is well adapted to the processes of
integration and differentiation. If f € SRV(I), 9 # 0, then |[f'| € SRV(S - 1).

If f € SRV(®), then for 8 > 1, [ f(s)ds € SRV(S + 1), and for 8 < -1,
|7 fs)ds € SRV(S +1).

Note that if L € SV, then there exists another, infinitely differentiable, SV
function L; such that L1(t) ~ L(t) as t — oo and L1(n) = L(n) for all large n € IN.

S 9O8-1) O -n+1),

If fe SRV(S)and d ¢ {0,1,2,...}, each derivative will ultimately have constant
sign, so || € SRV(S — n). In particular, for 9 > 1 the first [9] — 1 derivatives
will be ultimately convex and the [9]-th derivative ultimately concave. A related
result is the following: If f € RV(9), § ¢ {0,1,2,...}, then there exists a C*-
function g, all of whose derivatives are monotone, with f(f) ~ g(f).

o If f € RV(I), 9 € R, then for all sequences {a,}, {b,} of positive numbers with
limy, 0 a4y = limy 00 by, = 00 and limy,—c0 4,,/b;, = A € (0, 0), we have

lim ;EZ”; - A0, (1.12)

If 9 € R\ {0}, the conclusion is also true for A = 0 and A = co.

o (See [2].) Let L € SV and assume that fu * t1f(t)| dt converge for some 1 > 0.
Then fa * f(#)L(xt) dt exists and

f i f(OL(xt) dt ~ L(x) f ) f(t)dt

as X — 09,
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1.1.6 Regularly bounded functions

The main limitation of the theory so far developed is the need to assume the
existence of the limit lim;_, % A natural and useful generalization of regular
variation is the concept of regularly bounded functions (or O-regularly varying

functions) introduced by Avakumovi¢ in 1935.
Definition 1.4. A measurable function f : [a, c0) — (0, o) is called reqularly bounded
if
At
0 < liminf ——= f ) fA

RS =R
we write f € RB.

<oo foreveryA>1; (1.13)

Equivalently, f € R8B can be defined via limsup,_, % < oo forall A > 0.

The set of regularly bounded functions at zero (i.e., we take the limit as t — 0) is
denoted as RBy.

Clearly any RV function is RB. Any positive and measurable function which
is bounded away from both 0 and oo satisfies this definition; thus various simple
oscillating functions noted hitherto as not being regularly varying, such as 2 +sin ¢
and #”(1 + asin(Int)) with @ small, are regularly bounded, though ¢ still not. It is
evident that if measurability is strengthened to monotonicity one of the bounds in

m < f(At)/ f(t) < M (such inequalities can alternatively define R%) is automatically
satisfied. Further, for instance, if f is nondecreasing, instead of limsup,_, J% <

oo forall A > 1, it then is sufficient to require lim sup,_, L J(th) < oo for some A > 1.

Here are selected properties of RS functions:

o (Uniform convergence theorem for RB) If f € RB, then, for every A > 1, (1.13) holds
uniformly in A € [1, A].

o (Representation theorem for RB) A function f is regularly bounded if and only if
it has the representation

f(t)—exp{é(t)+f”() }

t > a, where £ and 1 are bounded and measurable on [a, o). If £(t) = const in the
representation, then f is referred to as a normalized regularly bounded function.

o A positive continuous function f is regularly bounded if and only if there exist
y,6 € R, y > 0, such that #f(t) is eventually almost increasing and °f(t) is
eventually almost decreasing.

o Itholds, f € R8B if and only if there exists 0 € R such that

t
f s Lf(s)ds < t2f(t) ast— co.

a
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o Itholds, f € R8B if and only if there exists y € R such that

f ) s f(s)ds < V' f(t) ast— oo,

t

1.1.7 Rapid variation

We proceed with another problem which naturally arises out: We examine func-
tions for which the limit in (1.1) attains the extreme values.

Definition 1.5. A measurable function f : [4, 00) — (0, o) is called rapidly varying
of index oo, we write f € RPV(e0), if

At 0 f 1,
fim 40 _ or0 <A< (1.14)
t—oo f(t) oo ford>1,
and is called rapidly varying of index —co, we write f € RPV(—0), if
At
. f(AD _ e for0<A <1, (1.15)
t—eo f(t) 0 forA>1.

The class of all rapidly varying solutions is denoted as RPYV .

While RV functions behaved like power functions (up to a factor which varies
“more slowly”), RPV functions have a behavior close to that of exponential func-
tions. In particular, ¢! € RPV(c0) and ¢! € RPV(—0).

If, for A > 0, we adopt the convention

0 forAx<1 oo forA<1
A =21 forA=1 AT ={1 forA=1
oo forA>1 0 forA>1

then regular and rapid variation of f can be expressed in a unique formula
lim;—,e f(AL)/f(t) = A®, where 8 € R U {+o0}.

We now present selected properties of RPV functions. Notice that some of the
results for regularly varying functions have partial analogues for rapid variation.

o (Uniform convergence theorem for RPV) If f € RPV(e0), then (1.14) holds uni-
formly in A over all intervals (0, M~!) and (M, o) for every M > 1.

o To establish (I.14), only f(At)/f(t) — oo for A > 1 has to be proved. Similarly for
(1.15).

o Let f be positive and differentiable, and let there exist

im w
AT

= +o00.

Then f € RPV.
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o If f € RPV with f’ increasing and lim;_,, f(t) = 0, then

. ()
Jim oI

o There is a connection between a slowly and rapidly varying function. Let f be
positive, locally bounded, and (globally) unbounded on [0, o). If f € SV, then
17 € RPV(c0) (in fact, RPYV (o) can be replaced here by a certain subclass, see
[14, Theorem 2.4.7]). If f € RPV(c0), then f~ € SV.

o If§ = +oo, the conclusion is true for monotone function f and c € ([0, o) U
{oo}) \ {1}.
o Suppose the function f : (0,00) — (0, o) is nonincreasing. If f € RPV(-c),
then for all 9 € IR, floo £ f(t)dt < oo and
t\9+1 t
0 ft sYf(s)ds

If for some ¥ € R the integral fa e f(t)dt converges and (1.16) holds, then
f € RPV(—c0).

Suppose the function f : (0, 0) — (0, ) is nondecreasing. If f € RPV(c0), then
for all 9 € R for which the integral fol t¥ f(t) dt converges, we have

S+1
i IO
f=eo fo s¥f(s)ds

If for some 9 € R the integral fol t9f(t)dt converges and (T.17) holds, then
f € RPV(0).

(1.17)

1.2 De Haan theory

In this section we work with somehow more general relations than the one defining
regular variation, namely such as (h(At) — h(t))/w(t) — k(A) as t — oo. Note that
functions satisfying this relation (which leads to the class IT) were introduced by
Bojani¢ and Karamata in 1963. They were rediscovered, and definitely studied
by de Haan in his thesis of 1970 [50], who introduced and studied related class I
which is also discussed below.

1.2.1 ClassII

The Karamata theory considered so far concerns asymptotic relations such as
fAt)/ f(t) = g(A) ast — co. Writing h = In f and k = In g, this becomes

h(At) = h(t) = k(A) ast — oo.
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One can work instead with the more general relation
h(At) — h(t)
w(t)

where w : (0,00) — (0, 0) is called auxiliary function of f. By that a new class of

functions — de Haan class — is introduced, see de Haan [50] and Geluk, de Haan
[47]. The case w = 1 leads to the Karamata case.

First note one context in which such relations naturally arise, namely the “lim-

iting case” in the Karamata theorem. Here the converse half yields no assertion,

while the direct half tells us that if L varies slowly and h(t) := fa t @ ds, then

% — 0. Much more precise links between L and h exist, however, involving

ditferencing, as the Uniform Convergence Theorem yields

h(At) = h(t) (" L(tu) Ydu
—L(t) —j; L du — ! 7_lnA

5 k(A) ast— oo, forall A >0, (1.18)

ast — oo.
The denominator w in (1.18) needs in general to be taken regularly varying. If
w € RV(9), then k(A), if it exists finite for all A > 0, has to be of the form

InA ford=0,
KA) = {M ford#0
3 .

If 9 # 0, nothing new is obtained (essentially we get regular variation). But 9 = 0
leads to a new useful class. This class is, after taking absolute values, a proper
subclass of the Karamata class SV.

Definition 1.6. A measurable function f € [2, 0) — R is said to belong to the class
IT if there exists a function w : (0, c0) — (0, o) such that for A > 0

L fAD—f)

fim =5 InA; (1.19)

we write f € ITor f € Il(w). The function w is called an auxiliary function for f.

Note that de Haan [50] studied the class Ilc(w) of SV functions for which a
positive and measurable function w exists such that for all A > 0,

i JAD =) _
m-—— =

- ClnA. (1.20)

If C # 0, then w must be SV. If C = 0 the slow variation of w is assumed.
Bingham et al. [14] studied classes of functions satisfying general asymptotic
relations related to (1.20). For instance, for w € RV(9), they consider the class of
measurable f satisfying forall A > 1

VR0

A
—_ _ 9-1
fim S5 = Cka(), - where ko(2) = fl u$1du.
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The resulting theory (de Haan theory) is both a direct generalization of the
Karamata theory above and what is needed to fill certain gaps, or boundary cases,
in Karamata’s main theorem. The term “second-order theory” is sometimes used
for this study. The original motivation was probabilistic. De Haan class presents
itself as very fruitful in various applications; as we will see later they include
applications in differential equations.

Let us give several examples. The functions f defined by

f(t) =Int+0(1),
() = (InH)*(Inp t)f +o(Int)*™!, & > 0, € R,
£(t) = exp{(Int)’} + o(Int) L exp{(Int)’}, 0 <y <1,
() =t 1InT(¢) + o(1)
are in I'l. The function
f(t) =2Int +sinlnt
isin SV, but not in I.

Now we present selected properties of functions in the class IT.
o If f €11, then for 0 < c < d < oo relation holds uniformly for A € [c,d].
o Auxiliary function is unique up to asymptotic equivalence.
o The statements f € ITand

lim f(At) —tf(t) —nA
o f() -1 [ f(s)ds

for A > 0 are equivalent.

o The statements f € IT and there exists L € SV such that

t
£(B) = L(t) + f @ds (1.21)
are equivalent.
o If f satisfies (I.21)), then f € TI(L). Hence
t
Lo~ -1 [ fods (122)

ast — oo. If f € TI(L) is integrable on finite intervals of (0, o), then (1.22) holds.

o If f eI, then lim;_, f(t) =t f(o0) < 0 exists. If the limit is infinite, then f € SV.
If the limit is finite, then f(o0) — f(t) € SV.
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o If—f; € Il(w;), where f;is eventually positive, i = 1,2, then —f; fo € II(fiwz+ frwy).

o If f € I(w), g is measurable and {f(t) — g()}/w(t) — c € Rast — oo, then
g € I(w).

o If f € II(w), then for any ¢ > 0 there exist so, M € (0, o) such that fors > sp, t > 1,

f(st) = f(s)

< Mt*.
w(s) 1T

For further properties see [14,147,50]. There are another classes, closely related
to I, which can also be important for our purposes. Geluk in [44] introduces
Il-regular variation:

t
f € TIRV(Y) if an only if % eIl

Further, in Omey, Willekens [134], the following class of functions was introduced.
As we will see, it opens further possibilities in obtaining more precise information
about certain solutions of certain differential equations.

Definition 1.7. Let f : (0,00) — IR be measurable. If there exist measurable
functions w, z such that z € SV and

FOA) = f(H) = w(t) In A
z(t)

for some function H(A), then we write f € ITRx(w, z).

— H(A) ast— oo forA >0,

Next we present selected information about the class I'TR;(w, z).
o If z(t) = o(w(t)), then f € IRy(w, z) implies that f € IT.
o (Auxiliary concepts) Consider functions h satisfying
h(At) = h(t) ~ k(A)g(t)

ast — oo. If g € SV, the limit function k(1) can be characterized as follows: for
each u, A > 0, we have

k(Ap) = k(A) + k(u).

Hence k(A) = cIn A for some real c. The corresponding class of functions i will
be denoted by ITV(c, g). Note that h € RV(9) if and only if Ink € ITV(3,1). If
c # 1, the class ITV(c, ) is the class IT.

o (Representation theorem) Suppose thatz € SV and f islocally bounded and define

t
6ty = -7 [ feras
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t > 0. Then f € IRy(w, z) if and only if there exists ¢ € R such that G € ITV(c, z).
Moreover, if f € IIRy(w, z), then

w(t) — G()
e 2(0)

=Cp
exists and f € IIR(G, z) with limit function H(A) = cIn A + %c(ln A)2.

1.2.2 ClassT

For RV functions (generalized) inversion gives again an RV function. For non-
decreasing unbounded functions in the class IT (which forms a proper subset of
SV) we obtain the following class by inversion; it is a useful subclass of rapidly
varying functions.

Another view of understanding is an extension of the notion of RV functions
defined by lim;_,« f(At)/f(f) = A’ in the sense that we consider the class of func-
tions satisfying the following property: There exists a function g : (0, ) — (0, o)
and 9 € R such that

f (t /\g(t))
lim =

t—o0 f(t)

for all positive A. First we confine our considerations to nondecreasing functions
f and ask for a characterization of the class of functions for which this relation
holds with 3 > 0. Without loss of generality we may take 9 = 1 (this only involves
a trivial change in g).

It turns out to be more convenient to start with the following definition which
is a mere transformation of the one just given.

Definition 1.8. A nondecreasing function f : R — (0, o) is said to belong to the
class T' if there exists a function v : R — (0, o0) such that for all A € R

_fE+Aod)
im =~

we write f € I' or f € I'(v). The function v is called an auxiliary function for f.

(1.23)

The following functions satisfy (1.23) with the given auxiliary functions v:

1 fort <0
£ = %) for fixed @ >0 with v(f) = _
f(t) = exp(t*) forfixeda >0 with ov(t) {tl‘a/a fort >0,

1 fort <1
t) = exp(tInt ith o(t) = -
f(t) = exp(tInt) with o(f) {1/lnt fort>1,
F(b) = exp(e’) with o(t) = e™".

We now give selected properties of functions in the class I'.
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o If f €T, then f € RPV(c).
o Relation (1.23) holds uniformly on each bounded interval.

o Any positive function z is an auxiliary function for f if and only if z(t) ~ v(t) as
t — oo.

o An auxiliary function v in (1.23)) cannot grow so fast: v(t)/t — 0 as t — co.
o If f € II(w) and f(c0) = oo, then f € I'(v) with v(t) ~ w(f~(¢)) as t — oo.
o If g € I'(v) and g(e0) = oo, then ¢ € Il(w) with w(t) ~ v(g™(t)) as t — oo.

o The statements f € I' and

t s
o fO INING) ci’c ds
t—o0 +
( [ f6) ds)

are equivalent.

o If f €T, then for all positive

o ffeds g
lim = —

t—o00 fa-1(t) fotf(s) ds o

Conversely, if a positive nondecreasing function satisfies this relation for some
positive a # 1, then f € T

o (Representation) The statements f € I' and

t
f<t>=exp{n<t>+ fo %ds},

where n(t) = c € R, () = 1 ast — oo, ¢ is positive, absolutely continuous
with ¢’(t) — 0 as t — oo, are equivalent. The auxiliary function of f may be
taken as ¢.

o (Representation) The statements f € I' and

t
f(t):exp{n<t>+ fo fs)dS}'

where n(t) - c € Rast — oo and w € SN (SN being defined below), are
equivalent. The auxiliary function of f may be taken as w.
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o If g € SN (SN being defined below), then f defined by
fds }
f) = ex —
f0=exp {fo 8(s)

o If f € I"has a nondecreasing positive derivative f’, then f" €T.

o If f € I'(v), then

satisfies f € I'(g).

Hence v can always be taken measurable.

o If f € I'(v), then v(t + Av(t)) ~ v(t) as t — oo uniformly on finite intervals of R
(that is v is in the below defined class SN).

o If f € T(v), then [ f(s)ds € I(v).

oIf i e RV(S)withd >0and f, €T, then fio f, €T

o If f eTand f; € RV(S) with -1 < 9 < oo, then fy o f, €T.
olf ffeland f) €T, then fio f, €T.

o For a nondecreasing function f, f € I' URYV if and only if
t s
t T)dtds
o Ok J f@drds

o ( [ £6) ds)z

Under these conditions necessarily C € [1/2,1]. If C=1,then f € I'. If C < 1,
then f € RV(1/(1-C) -2).

(1.24)

We already know thatI" € RPV(c0). For an example showing that the inclusion
is strict see the proof of [14, Proposition 2.4.4].

In applications to differential equations we will also use the class I'_ defined
as follows. A function f € I'_(v) if 1/f € I'(v). Alternatively we can define: A
function f : (0, 00) — (0, ) is in the class I'(; v), 0 being a real number and v € SN
(see below), if
. ft+ Av(t)

)

for all real A. Clearly, I'(1;v) = I'(v) and I'(-1,v) = I'_(v). It holds:

= exp(oA)

If f" € T'(v), then }Lrgo f(t) = Aexists, A — f(t) ~ v(t) f(¢),
and A - f(t) e T_(v). (1.25)

The class of auxiliary functions for functions in the class I' is an interesting class
in its own right since it can be used in either context as well.
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Definition 1.9. A measurable function f : R — (0, o) is Beurling slowly varying if

o £+ Af®)

ERNNT

we write f € BSV. If (1.26) holds locally uniformly in A, then f is called self-
neglecting; we write f € SN.

=1 forallA eR; (1.26)

Here are selected properties concerning the classes 8BSV and SN.

o If f € BSYV is continuous, then f € SN.

o (Representation) It holds f € SN if and only if it has the representation

t
0= [ v,
where lim;_,., ¢(t) = 1 and ¢ is continuous with lim;_,., () = 0.
o If f € SN, then lim;_,, f(t)/t = 0.

o If f € BSV is continuous, then there exists ¢ € C! such that f(f) ~ g(t) and
g'(t) > 0ast — oo.

Consider f € RV(9), 9 > —1. Then

iy fs)ds L I | fdds 1
tf(2) d+1 t 9+2
f t fo f(s)ds

ast — oo, see the Karamata theorem and (1.24). By setting

h(t) = fot fosf(r)drds

and combining with the above two relations we find that / satisfies the
differential equation
WO (1) = (), (1.27)

where @(f) = (9+1)/(9+2). This leads to the idea to start from and study the
asymptotic behavior of nonnegative solutions of under various conditions
on ¢, see Omey [132]. For instance, the following holds, cf. (I.24). Suppose that i
is a nonnegative solution of and p(t) > C€ RU {+co}ast — o0. If C < 1 or
C > 1, then h € RV(B) where p = 1/(1 = C); here p = 0if C = 0. If C = 1, then
h € I'(d,v) where v = |h/h’| € SN and d = 1 or d = —1 depending on the sign of /’.
Second order behavior is also studied in Omey [132].

The behavior of a function f € B8V is controlled by the function f itself. A
similar class of functions controlled by another function z is defined as follows
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(see e.g. [131,1133]). Suppose that z € SN. A positive and measurable function f
is controlled by z if for all real A,

flt+Az0)
f®)
as t — oo; we write f € SC(z). It holds: If f* € SC(z), then for all real A,
flt+Az(t) = f(£) = (1 + o(W)Az(t)f'(£) (1.28)

locally uniformly in A. For other classes related to I see [133]].

1.3 Some other related classes

1.3.1 Generalized regularly varying functions

The following type of extension of RV functions was introduced in [60]. Moti-
vation was primarily for purposes of studying differential equations. Consider a
continuously differentiable function w which is positive and satisfies «’(t) > 0 for
t € [b, 00) and lim;—,co w(t) = oo.

Definition 1.10. A measurable function f : [4,00) — (0, 00) is called reqularly
varying of index 9 with respect to w if f o w™! € RV(S); we write f € RV, (9). If
9 =0, then f is called slowly varying with respect to w; we write f € SV,,.

The following selected properties of generalized RV functions are mostly im-
mediate consequences of the properties of RV functions.

o feRV,(9)if and only if f(t) = w®(t)L,(t), where L,, € SV,
o If L, € S8V, and 9 > 0, then w®(t)Ly(t) = o0, 0 ¥(f)Ly,(t) = 0 as t — oo.

o (The representation theorem): L, € SV, if and only if

t
Lo(t) = c(t) exp { f 0 ) ds}, (1.29)

w(s)

t > a, for some a > 0, where ¢, h are measurable and ¢(t) — ¢ € (0, ), h(t) — 0
as t — oo. If ¢(t) = cin (1.29), then L, is called normalized slowly varying with
respect to w; we write L, € NSV,,. A generalized regularly varying function
f(t) = w®(t)Lo(t) with L, € NSV, is called normalized reqularly varying of index
9 with respect to w; we write f € NRV,(9).

o Representation of a generalized RV-function can alternatively be written as
follows: f € RV, (9) if and only if

t
F(B) = c(t) exp { f V) 566) ds}, (1.30)

w(s)

t > a, for some a > 0, where ¢, 6 are measurable and c¢(t) — ¢ € (0, 0), 6(f) — 9 as
t — oo.
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o If w(t) ~ Kg(t) as t — oo for some constant K > 0, then
RV o(9) = 7{(‘/({;(19)
for any 9 € R.

o Itholds
RV r (8) = RV,(dy)

forany 9 € Rand y € (0, ).
o There hold RV;4(9) = RV(3) and NRViq(9) = NRV(I).

It would be of interest to observe that there exists a function which is slowly
varying in the generalized sense butis not slowly varying in the sense of Karamata,
so that, roughly speaking, the class of generalized Karamata functions is larger
than that of classical Karamata functions. In fact, using the notation

exp,t =t, exp,t=exp(exp,_,t), n=12...,
Ingt=¢t, In,t =In(ln,1¢t), n=1,2,...,

we define the functions ¢,(t) and f,(t) for n € Z by
On(t) = exp, t, ¢_u(t) =log,t, n=0,1,2,...,

and
fat) =2 +sing,(t), n=0+1,%2,....

Since ¢, 1(t) = ¢_u(t) and Py, © Pu(t) = Pman(t) for any m, n € Z, we have
fu© G (6) = fum(t)
for any m, n € Z, from which, by taking into account the fact that
fa(t) € SV forn < -2 and f,(t) ¢ SV forn > -1,
we conclude that

fu(t) ¢ SV and f,(t) € SV, ifn>-1land m > n +2.

Regular boundedness is generalized as follows.

Definition 1.11. A measurable function f : [4,00) — (0, 0) is called regularly
bounded with respect to w if f o w™' € RB; we write f € RB,,.

A function f belongs to R8B,, if and only if it has the representation

t
f(t) = exp {n(t)+ f ZT(:’))E(S) dS},

where 1 and & are bounded measurable functions on [a, o).
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1.3.2 Subexponential functions

Now we recal the concept of subexponential functions which have been shown
useful in the study of asymptotic properties of differential equations, and are also
somehow related to RV functions, see e.g. [5,7].

The convolution of two appropriate functions f, g defined on [0, o) is denoted,
as usual, by

t
(f * 9)t) = fo f(t-9)g()ds, 20,

Definition 1.12. Let f : [0, 00) — (0, o) be a continuous function. Then we say that
f is (positive) subexponential if

lim f s)ds 1.31
(where we assume the convergence of the integral) and
im sup —-1/=0 forallT>0 (1.32)
=00 g<s<T f(#)

(i.e., limi,o f(t =)/ f(t) uniformly for 0 <s < T for all T > 0).

The nomenclature subexponential is suggested by the fact that (1.32) implies
that, for every ¢ > 0, f(t)e! — o0 ast — oo, see e.g. [8]. It is also true that
lim;, f(t) = 0. In the definition above, condition (1.31) can be replaced by

t-T
Thm limsup — [0 f flt—=s)f(s)ds =

t—o0

and this latter condition often proves to be useful in proofs.
The properties of subexponential functions have been extensively studied, for
example, in [7, 18, 21]. Simple examples of subexponential functions are

fHy=A+t)y*fora>1,
fy=e M foro<a<1,
f(t) — e—t/ ln(t+2)'

The class of subexponential functions therefore includes a wide variety of functions
exhibiting polynomial and slower-than-exponential decay: nor is the slower-than-
exponential decay limited to a class of polynomially decaying functions. It is noted
in [7] that the class of (positive) subexponential functions includes all continuous,
integrable functions which are regularly varying at infinity. If ¢ € RV(8) with
9 < -1, g is subexponential.
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1.3.3 Regular variation on various time scales

The concept of regular variation can be extended in such a way that it allows
us to study asymptotic behavior of difference equations or g-difference equations
or dynamic equations on time scales, see Section Section Section
respectively. Since this text is focused on differential equations, we will be very
brief.

The concept of regularly sequences was introduced already by Karamata in
1930. In fact, two main approaches are known in the basic theory of regularly
varying sequences: the approach due to Karamata [73], based on a definition that
can be understood as a direct discrete counterpart of simple and elegant continuous
definition, and the approach due to Galambos and Seneta [43], based on purely
sequential definition.

Definition 1.13 (Karamata [73]). A positive sequence {y}, k € IN, is said to be
reqularly varying of index 9, 9 € R, if

lim 249 _ 19 forall A > 0, (1.33)

k— o0 yk
where [u] denotes the integer part of u.

Definition 1.14 (Galambos and Seneta [43]). A positive sequence {y},
k € N, is said to be reqularly varying of index 9, 9 € R, if there is a positive
sequence {ay} satisfying

lim % =c,  lim k(l - %) -9, (1.34)

k—oo Q) k—oo (2795
C being a positive constant.

If o = 0 in Definition[I.13]or then {y;} is said to be slowly varying.

In Bojani¢, Seneta [17], it was shown that Definition is equivalent to Defi-
nition

In Matucci, Rehék [119] the authors are interested in applying regularly varying
sequences to certain second order difference equations. For this purpose a slight
modification (in the equivalent sense) of Definition is proposed there; the
latter condition in (1.34) is replaced by

. kAO(k
lim — =
k—oco O

J.

In Bojani¢, Seneta [17] and Galambos, Seneta [43], the so-called embedding
theorem was established (and the converse result holds as well):

Theorem 1.6. If {yi} is a reqularly varying sequence, then the function R (of a real
variable), defined by R(t) = yy, is regularly varying.
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Such a result makes it then possible to apply the continuous theory to the theory
of regularly varying sequences. However, the development of a discrete theory,
analogous to the continuous one, is not generally close, and sometimes far from
a simple imitation of arguments for regularly varying functions, as noticed and
demonstrated in Bojani¢, Seneta [17]. Simply, the embedding theorem is just one of
powerful tools, but sometimes it is not immediate that from a continuous results
its discrete counterpart is easily obtained thanks to the embedding; sometimes
it is even not possible to use this tool and the discrete theory requires a specific
approach, different from the continuous one.

For further properties of regularly varying sequences and some other related
useful concepts (such as rapidly varying sequences) see e.g. [17, 25, 26, 43].

References concerning applications of regular variation in difference equations
are given in Section [6.2}

In Rehak [141], the concept of regularly varying functions on time scales (or
measure chains) was introduced; the primary purpose was to investigate dynamic
equations on time scales.

Recall that the calculus on time scales (or, more generally, on measure chains)
deals essentially with functions defined on nonempty closed subsets of R, see
Hilger’s initiating work [55] and the monograph [16] by Bohner, Peterson. Hence,
it unifies and extends usual calculus and quantum (g- or k-) calculi.

A theory of regular variation on time scales offers something more than the
embedding result, and has the following advantages: Once there is proved a result
on a general time scale, it automatically holds for the continuous and the discrete
case, without any other effort. Moreover, at the same time, the theory works also
on other time scales which may be different from the “classical” ones.

A time scale T is assumed to be unbounded above. The following definition is
motivated by a modification of the purely sequential criterion mentioned above.

Definition 1.15. A measurable function f : T — (0, o) is said to be reqularly varying
of index 9, 9 € IR, if there exists a positive rd-continuously delta differentiable
function « satisfying

f~Ca(t) and lim t‘ﬁg) -y

C being a positive constant. If 9 = 0, then f is said to be slowly varying.

In Rehék, Vitovec [153], a Karamata type definition for RV functions on T is
introduced and an embedding theorem is proved. Note that conditions posed on
the behavior of the graininess () of a time scale T plays a crucial role in the theory.
In particular we suggest to distinguish three cases: (a) The graininess satisfies the
condition u(t) = o(t) as t — oo. Then we obtain a continuous like theory which
unifies the above discrete and continuous theories. (b) The case where u(t) = Ct
with C € (0, o) leads to the g-case, which is discussed below. (c) Other cases — in
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particular when the graininess is “too large” or a “combination of large and small”
— give no reasonable theory of regular variation in a certain sense.

Applications of this theory (especially when p(t) = o(t)) to dynamic equations
on time scales can be found in the works listed in Section [6.3]

The concept of the so-called g-regularly varying functions was introduced in
Rehék, Vitovec [153]. Let gNo denote the g-uniform lattice ™o = {g* : k € Np}, g > 1.
Let D,;f denote the Jackson derivative of f. Further we set [a], = (4" —1)/( — 1)
for a € R. Quantum version of regular variation of f : N0 — (0, 00) can be defined
in accordance with Definition [I.15]as follows.

Definition 1.16. A function f : g0 — (0, c0) is said to be g-regularly varying of index
9, 9 € R, if there exists a function f5 : qNU — (0, o0) satisfying

tDap()
p(t)

C being a positive constant. If § = 0, then f is said to be g-slowly varying.

f(t) ~ Cp(t), and lim = [81,,

However, as was shown in the quoted paper, thanks to the structure of g™,
we are able to find much simpler (and still equivalent) characterization which has
no analogue in the classical continuous or the discrete case. Such a simplification
is possible since g-regular variation can be characterized in terms of relations
between f(t) and f(qt), which is natural for discrete g-calculus, in contrast to other
settings. In particular, for f : N0 — (0, c0) we have

fqt) s

f is g-regularly varying of index 9 < lim ——

AN

For further properties of g-regularly varying functions (and other related functions
such as g-rapidly varying ones) see [142] and [154]. Note that in [145], certain
generalization of g-regular variation was introduced which somehow involves
also g-rapid variation or g-hypergeometric functions.

Applications of this theory to g-difference equations can be found in the works
listed in Section

1.3.4 Hardy field

The so-called logarithmico-exponential function is defined as a real-valued function
defined on [a, c0) by

a finite combination of the ordinary symbols (+, -, -, /, {/)
and the functional symbols In(-), exp(-), operating
on the variable x and on real constants,

see Hardy [52, III.2].
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More generally, see Bourbaki [18], a Hardy field is

a set of germs of real-valued functions on [4, o) that is closed
under differentiation and that form a field under the usual
addition and multiplication of germs,

see also Rosenlicht [155]. Loosely speaking, Hardy fields are the natural domain
of asymptotic analysis, where all rules hold without qualifying conditions.

InHardy’s own words [52, V.6]: “No function has yet presented itself in analysis
the laws of whose increase, in so far as they can be stated at all, cannot be stated, so
to stay, in logarithmico-exponential terms.” This statement of Hardy was basically
influenced by the fact that the arithmetic functions occurring in the number theory
having often very complicated structure and for which he expected “would give
rise to genuinely new modes of increase,” so far obey the log-exp laws of increase.

That indicates a possible significance of the results in this treatise. For any
logarithmico-exponential function f (or any element of Hardy fields) together
with the derivatives, is ultimately continuous and monotonic, of constant sign
and lim,_,« f(x) exists as a finite or infinite one. On the other hand, as we could
see above, a slowly varying function may somehow oscillate, even infinitely. As
some of the results in the next chapter show, solutions of differential solutions
(for instance, of a second-order (half-)linear one) may behave as SV functions.
Therefore, the solutions of such a (simple) equation may exhibit a “genuinely new
mode of increase.” To support our point we emphasize here that no hypothesis of
some of the theorems which lead to the above statement about solutions is related
to regular variation.

For completeness, note that Rosenlicht in [155] looks for asymptotic formulas
for solutions to the linear differential equation vy’ = p(t)y with the help of the
theory of Hardy fields. It is assumed that p(t) — oo as t — oo and p belongs
to a Hardy field. In fact, the problem is transferred to the investigation of the
associated Riccati equation.



Chapter

Linear second order differential
equations

Although this text is focused primarily on applications of the theory of regular
variation to nonlinear differential equations, we start with linear equations. The
objective of this chapter is multiple: comparison purposes, reference purposes,
but also other ones. Indeed, many of the results which we present here will
be later generalized to a nonlinear case. Second, some of the results for linear
equations will be utilized in the study of nonlinear equations in various ways.
Third, some of the statements may serve as a motivation for an attempt to extend
them (in particular, to the half-linear case or to the nearly linear case). Moreover,
our survey includes also the results that appeared after Mari¢’s book [105] and we
point out new relations among various results, and revise some of them.

Since we want primarily to deal with nonlinear equations, we present the
results in this chapter without proofs and give only comments; they include the
main ideas in some instances.

Perhaps the first paper where linear differential equations were studied in the
framework of regular variation is [130] (Omey, 1981). Note that a connection of reg-
ular variation with nonlinear equations was shown much earlier by Avakumovi¢
in 1947, see [9] and Section 4.2}

We consider linear second order equation

Y’ +pt)y =0, (2.1)

where p is a continuous function on [4, ). Many of the results in this chapter were
obtained by Mari¢, Tomi¢, and their collaborators. Another important authors in
this direction are Howard, Geluk, Grimm, Hall, Omey, and Radasin — this concerns
the research up to the year 2000. For more information see the monograph [105]
by Mari¢. Recent results for linear equations presented here are mainly due to
Jaros, Kusano, Mari¢, and Rehak.

39
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2.1 Karamata solutions; coefficient with sign condition
Instead of (2.1) it is more convenient to consider now

¥’ —pt)y =0. (2.2)

In the following theorem, the sign condition on p is assumed. Note that under
this condition the equation is nonoscillatory (by the Sturm comparison theorem).
Without loss of generality, we analyze only positive solutions.

Note that although the statements refer to regular or rapid variation, none of
the hypotheses of the theorem requires this notion.

Theorem 2.1 (Mari¢, Tomié [105,114]). Let p be positive.
(1) Equation has a fundamental set of solutions y1(t) = Li(t) € SV, ya(t) =
tLo(t) € RV (1) if and only if

tlim tf p(s)ds = 0.
—00 ¢

Moreover, L1, L, € NSV with Ly(t) ~ 1/L(t). All positive decreasing solutions of
are in NSV and all positive increasing solutions are in NRV(1).

(ii) Equation has a fundamental set of solutions y1(t) = t51L1(t) € RV(81),
ya(t) = t20Ly(t) € RV(8y) if and only if

where 91 < I are the roots of the equation 92 -9 - C = 0. Moreover, Li,L, € NSV
with Ly(t) ~ 1/((1 —91)L1(t)). All positive decreasing solutions of are in NRV(91)
and all positive increasing solutions are in NRV(3;).

(iii) Equation has a fundamental set of solutions 1y, € RPV(—o0), y € RPV(c0)
if and only if for each A > 1

At
tlim tf p(s)ds = co.
—00 ¢

Moreover, all positive decreasing solutions of (2.1) are in RPV(—co) and all positive
increasing solutions are in RPV(co).

It would be of interest whether the integrals in conditions in all three parts of
the theorem were the same. To make a conclusion, the following observations are

important (see Grimm, Hall [49]): ¢ ftw p(s)ds — 0 ast — oo if and only if, for each
A> 1,tftMp(s)ds — 0ast — oo. Also,tftoop(s)ds — C>0ast — ooifand only if,

foreach A > 1,t ftm p(s)ds = C(A-1)/A ast — oo. Thus, the interval of integration
in all three conditions may be taken to be (f, At). On the other hand, these are
easier to verify for the interval (t, c0) as it appears in the first of them. However
in the third condition the interval (¢, Af) cannot be replaced by (t, o) even when
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the integral ftoo p(s)ds converges. For, the condition ¢ ftoo p(s)ds — coast — o

does not necessarily imply even that lim;_,« ¢ ftMp(s) ds exists for all A > 1. A
counter-example is presented in Grimm, Hall [49].

From the previous theorem we get the following statement. Recall that by
Karamata functions we mean SV or RV or RPV functions.

Corollary 2.1. All (eventually positive) solutions are Karamata functions if and only if

there exists for each A > 1,
At
lim ¢ p(s)ds

t—o0 ¢

as a finite or infinite one.

Mari¢ and Tomi¢ in [113] proved a similar result under a more restrictive
assumption on p, namely that the limit lim;_c t?p(t) exists. This is a sufficient
condition for to be in the Karamata class. More precisely, we have the
following

Corollary 2.2 (Mari¢, Tomié [113]). Iflim;—« t2p(t) = A, then all decreasing solutions
of are slowly or rapidly or regularly varying functions with the index 9 = (1 —
V1 + 4A)/2 in the latter case, according toas A = 0, A = oo, A € (0, ), respectively.

The second linearly independent solution can be treated as in the general case.
That is, with the use of the reduction of order formula in the SV and RV cases,
and directly in the RPYV case.

Such a result was in essence first discovered by Omey in [130, Theorem 2.1]
(with an additional assumption) and formulated for solutions tending to infinity.
This excludes the case A = 0 or 9 = 0, since SV solutions cannot cannot increase.
Thus the “trichotomy” character of the result is lost in such formulation.

An important feature of Corollary [2.2] consists in opening various possibilities
of a subtle use of classes I, BSV and I in further analysis of solutions under
consideration. Thus, by specifying the way in which #?f(t) tends to the finite limit
A, Geluk proved in [45] some refinements of Corollary 2.2} see Subsection[2.6.1} In
that he makes use of the class I'l. Analogous results for the case A = oo are obtained
in [130} 131]] by Omey using classes BSV and I, see Subsection Also some
of these results were generalized to the half-linear case and improved even in the
linear case, see Section[3.6] In Section 5.5 we discuss this type of results for nearly
linear equations.

2.2 Karamata solutions; coefficient with no sign condition

Now consider equation (2.1) with no sign condition on p. Such an equation may
have oscillatory solutions. However, since we are interested in solutions belonging
to Karamata class whose elements are positive, only nonoscillatory solutions have
to be considered. Observe that expressions in conditions guaranteeing regular
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variation or regular boundedness resemble expressions which appear in the well
known Hille-Nehari type (non)oscillation criteria.

In contrast to the case when p(t) < 0 in (2.1) and eventually positive solutions
always exist, here we have to establish the existence of nonoscillatory solutions
first. This can be achieved either by proving it ab ovo, in fact simultaneously with
the regularity like in subsequent Theorems[2.3|and[2.4} or by applying the following
auxiliary result. In addition to the methods used by Howard, Mari¢, Radasin
[57, 56], there exists also a different approach, based on the Banach contraction
mapping principle, see Jaro$, Kusano [58] — both, principal and nonprincipal
solutions can be directly constructed. Results in Section [3.2|can be understood as
a half-linear extension of this approach.

The following result very well suits our needs. The proof uses the method of
successive approximation and a variant of the Riccati technique can be revealed
init.

Proposition 2.1 (Howard, Mari¢, Radasin [57,[105]). Put

P(t):I p(s) ds. (2.3)

If there exists a positive continuous function h with h(t) — 0 as t — oo, and such that for
t > to, IP(H)] < h(t), ftm h2(t)dt < Ah(t) with 0 < A < 1/4, then [2.0)) is nonoscillatory
and there exists a solution of the form

¢
y(t) = exp {f (P(s) — Z(s)) ds}. (2.4)

Here Z is a solution of the integral equation

Z(t) = - ft (Z(s) — P(s))*ds (2.5)

satisfying Z(t) = O(h(t)) as t — oo.

The previous proposition plays a key role in the proof of the following gener-
alization of Theorem [2.1}(i).

Theorem 2.2 (Howard, Mari¢ [56, 105]). Equation has a fundamental set of
solutions y1(t) = L1(t) € SV, ya(t) = tLy(t) € RV(1) if and only if

lim tfoo p(s)ds = 0. (2.6)
t

t—o0

Moreover, L1, Ly € NSV with Ly(t) ~ 1/L1(t) as t — oo.

In the next result, Proposition cannot be applied, and one has to prove
regularity and thus nonoscillation directly.
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Theorem 2.3 (Howard, Mari¢ [56],[105]). Let A € (—0,1/4), A # 0, and let §1 < 9, be
the roots of the equation 9% — 9 + A = 0. Equation has a fundamental set of solutions
y1(t) = tNL1(t) € RV(81), ya(t) = t72Ly(t) € RV(S,) if and only if

lim tfoo p(s)ds = A. (2.7)
t

t—o0
Moreover, L1, Ly € NSV with Ly(t) ~ 1/((1 — 91)L1(t)) as t — oo.

The next theorem deals with the border case when A = 1/4 in (2.7). Note that
in general no conclusion concerning oscillation or nonoscillation of (2.1) can be
drawn. Also in this result, Proposition [2.1| cannot be applied.

Theorem 2.4 (Howard, Mari¢ [56} [105]). Let A = 1/4 and suppose that the integral
f ~ @ ds converges. Put

(1) ::tftoop(s)ds—A and P(t) := ﬁm@ds

fw@ds<oo.

Then equation has a fundamental set of solutions y(t) = VL1 (1) € RV(1/2),
ya(t) = ViintLy(t) if and only if holds. Moreover, L1,L, € NSV, tend to constants
and Ly(t) ~ 1/L1(t) as t — oo.

Assume

In the above theorems the existence of the limit of ¢ j;oo p(s)ds is required. If
one relaxes that request to a condition of Hille-Nehari type, then we get regular
boundedness. Proposition [2.1]finds application in the proof.

Theorem 2.5 (Howard, Mari¢ [56| [105]). If, for large t,

’t ftmp(s)ds

then all (eventually positive) solutions of are in RB.

1
<A< -
< <4,

2.3 Generalization and self-adjoint equation

It is natural to ask whether the results of the previous section can be extended to
the more general equation

Yy +8®)y +h(t)y=0 (2.8)
or to the equation in the self-adjoint form
(r(O)y") +p(t)y = 0. (2.9)

The next result is an easy consequence of Theorem it is based on a suitable
transformation.
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Theorem 2.6 (Mari¢, Tomi¢ [105]116])). Let A, B € R be such that

(2.10)

and let ay < ap be the roots of the equation a®>—a+y = Qwithy = B/2—B?/A+A. Further,
let h be continuous and g continuously differentiable on [ty, oo) and such that tg(t) — B
as t — oo. Then there exist two linearly independent regularly varying solutions y1, y» of

of the form y;(t) = t% B2Ly(t), i = 1,2, if and only if

lim tf h(s)ds = A.
t

t—o0

Here L1, L, € NSV are such that

1 te(s)
Lz(t) ~ m exp {ja‘ T dS}

with some e(t) — 0as t — oo,

Condition excludes the case a; = 0. Observe that A = B = 0 implies
a1 =0,a2 = 1sothat y; € NSV and 12 € NRV(1).

From the previous theorem, taking g(t) = r'(t)/r(t), h(t) = p(t)/r(t), we get the
result for self-adjoint equation (2.9).

Corollary 2.3. Let A, B, a1, ap be as in Theorem Let p be continuous, r positive and
twice continuously differentiable on [to, 00), and such that

tr' ()
r(t)

Then has two RV solutions y; having the same form as in Theorem [2.6if and only if

limtf @ = A.
t

s =
t—00 r(s)

— B ast— oo. (2.11)

Using the method of Theorem 2.1 Grimm and Hall [49] obtained similar result
but for p(t) < 0 only, requiring of p to increase and tend to a (finite) limit as
t — oo. This is more restrictive than but, as a compensation, ¥ may be only
once continuously differentiable. They also generalized Theorem [2.6}(iii) using
the same method:

Theorem 2.7 (Grimm and Hall [49])). Let y be a decreasing solution of 2.9), p(t) <0,
and r € NSV be nondecreasing with r(t) — 1 ast — oco. Then y € RPV if and only if

foreach A > 1, tft/up(s)ds — coast — oo.
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Jaro$ and Kusano in [60] used a different approach to investigation of RV-
type solutions to (2.9). It utilizes the concept of generalized regular variation, see
Subsection which was introduced for this purpose in [60]. The contraction
mapping theorem plays also a role. These results were generalized later to the
half-linear case, see Section For comparison purposes we give the results for
linear equation here. Note however that some differences may occur. For instance,
in the linear case, once we know the behavior of one solution, then — in many
cases — it is easy to examine behavior of a linearly independent solutions. Further,
once we have a fundamental set of RSB solutions, it is almost immediate (because
of linear combinations) to show that all positive solutions are RB. On the other
hand, the solution space for half-linear equations is not linear and the reduction
of order formula cannot be used.

No differentiability condition on r and no sign condition on p is assumed.
Essentially, we require p, r to be continuous with r > 0. The two cases are distin-
guished; this is quite usual when dealing with equations of the form (2.9):

“ ds

ﬁ TS) ds = 00, (212)
and “ g
S

ﬁ TS) ds < oco. (213)

We denote R(t) = [ ' 5 ds if (2.12) holds and R(t) = I 5 ds if (2.13) holds.

In the next theorem we assume that p is integrable on [a, o).

Theorem 2.8 (Jaro$, Kusano [60]). Let hold.

(i) Let A € (—o0,1/4) and denote by 31,92, 91 < 92, the real roots of the quadratic
equation 9% — 9 + A = 0. Equation has a fundamental set of solutions {y1, y} such
that y; € NRVR(S:), i = 1,2, if and only if

tlim R(t)f p(s)ds = A.
—00 ¢
(i1) Assume .

tlim R(t)f p(s)ds = 1/4.
—00 !

Put - ,
o) =R [ perds-

and suppose that

= 1p(s) = (s)
f {ORE B ””df ORE) &<

where P(t) = ftoo % ds. Then equation possesses a fundamental set of solu-
tions {y1, y2} such that y; € NRVRr(1/2), i = 1,2, and y1(t) = /R(t)L1(t), y2(t) =
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VR Ly () InR(t), where L1, Ly € NSVy and lim;—,o, Li(f) = C; € (0,00), i = 1,2, with
C1C = 1.
(iii) If

—i < li¥n inf R(t) p(s)ds < lim sup R(t) p(s)ds < }1
—00 ¢

t—oo

then (2.9) is nonoscillatory and all its eventually positive solutions are in RBR.

The next theorem is a complement of the previous one, in the sense of condition
[2-13). We assume that R?(t)p(t) is integrable on [a, ).

Theorem 2.9 (Jaros, Kusano [60]). Let (2.13) hold.
(i) Let B € (—o0,1/4) and denote by 1, uz, p1 < po, the real roots of the quadratic

equation u> — u + B = 0. Equation has a fundamental set of solutions {y1, y»} such
that y; € NRV, r(ui), i = 1,2, if and only if

lmvi— _W@M$$:B

= R(t)

(ii) Assume

) 1 (o] ~2 3
ggﬁE&L‘ngm@ds_1m.
Put

1 - 1
00 =g | Ropeds-

foo |¢(~S)| ds < oo and foo ¢(f) ds < o0,
(s)R(s) r(s)R(s)

where P(t) = ftoo r(lzgil) ds. Then equation (2.9) possesses a fundamental set of solutions

{y1, y2} such that y; € NRV, r(=1/2),i=1,2,and

and suppose that

(0 = ROL®, o) = R )Lz(t)ln%

where Ly, Ly € NSV and lim;—, Li(t) = C; € (0,0),i = 1,2, with C;C2 = 1.
(iii) If

-&<hm§%£5 <W@m9@<hﬂgp7—f'ﬁgwg@<—

then (2.9) is nonoscillatory and all its eventually positive solutions are in RB z.
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2.4 Linear differential equations having
regularly varying solutions

Kusano and Mari¢ in [94] deals with the question whether for any distinct real
constants 91 and 9, there exists a differential equation of the form (2.9) which
possesses a pair of solutions y; € RV(9;), i = 1,2. The problem was solved for
more general, half-linear, equation. Here we formulate the linear version. The
general statement along with the proof is presented in Section[3.7] The function w
which appears in the theorem is assumed to satisfy conditions from the definition
of regularly varying functions with respect to w, see Definition[1.10}

Theorem 2.10 (Kusano and Mari¢ [94]). Let 91 and 9, be any given real constants
such that |91] # [9].

(i) Suppose that r satisfies 1/r(t) ~ Ko 19271 (t)w’(t) as t — oo for some positive
constant K. Let 91 + 92 > 0 and p be conditionally integrable on [a, o0). Then equation
possesses a fundamental set of solutions y; € NRV (), 1 = 1,2, if and only if

919

: 91+92 * —
lim Kw (t)j; p(s)ds S

t—oo

(ii) Suppose that 1/r(t) = Kw* 19271 ()’ () for some positive constant K. Let 91 +

92 < 0and w?®1+92)p be conditionally integrable on [a, o). Then equation possesses
a fundamental set of solutions y; € NRV(9)), i = 1,2, if and only if

9197
H+9 '

lim Ko~ ®1+92)(p) f ¥ 1) (5)p(s) ds = —
t

t—o0

2.5 Regularly varying solutions of Friedmann
equations

Mijajlovié, Pejovi¢, Segan, and Damljanovié in [125] applied the theory of RV func-
tions to the asymptotical analysis at infinity of solutions of Friedmann cosmological
equations. Their analysis is strongly based on Theorem [2.2/and Theorem

Let us consider Friedmann equations

7\2 2
(u ) _ 8nG p- ke (Friedmann equation) (2.14)

u 3 u?

w' _ 4AnG 3p
u 3 2

+ —) (acceleration equation) (2.15)

that describe the evolution of the expansion scale factor u(t) of the universe. Here,
p = p(t) is the energy pressure in the universe, p = p(t) is the density of matter in
the universe, k is the space curvature, G is the gravitational constant and c is the
speed of light. The variable t represents the cosmic time.
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In [125], it is established a necessary and sufficient condition for solutions that
satisfy the generalized power law expressed as u(t) = t°L(t), where L € SV. The
analysis is strongly based on Theorem and Theorem For this reason it
is introduced a new parameter u(t) = q(t)(H(t)t)*> where g(t) is the deceleration
parameter and H(t) is the Hubble parameter. It is proved that the Friedmann
equations and have an asymptotical solution u(t) that satisfies the
generalized power law if and only if the integral limit

Y = limtfm& s (2.16)
t
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exists and Y < 1/4. It is proved that the values of the constant Y completely deter-
mines the asymptotical behavior of all cosmological parameters u(t), H(t), q(t), p(t),
and p(t). It appears that this approach covers all results on cosmological parame-
ters for the Standard model of the universe, as presented for example in [103] or
in [139]. The crucial role in this analysis is played by the linear functional related

to (2.16))
L = )
M(f) = tll,r?ot t S—zds,

M is defined on the class of real functions that satisfy (2.16) for some Y. Itis proved
that f € ker M if and only if there are real functions ¢ and 7 such that

f(t) =te"(t) +n(t), @), n(t) - 0ast — co.

This representation of f € ker M yields the asymptotical representations of the
mentioned cosmological parameters, even assuming that the Einstein’s cosmolog-
ical constant A is non-zero. Detailed proofs and physical interpretations of these
results can be found in [[125].

2.6 More precise information about asymptotic behavior

2.6.1 De Haan type solutions

To some extent, the results here can be understood as ramifications and refinements
of observations related to Corollary

We start with the statements established for by Geluk in [45], see also
Mari¢ [105], which essentially concern a description of behavior of SV solutions.
Under the conditions posed on p (in addition to #?p(t) — 0 as t — oo, we have
a second order condition), the Hartman result [53, Chapter XI, Ex. 9.9b] can be
refined. Note that — for other comparison purposes — the Hartman result is
recalled below in (2.33).

Theorem 2.11 (Geluk [45]). Assume t?p(t) — 0ast — oo. Let y be an eventually
positive decreasing solution of (2.2). If p € RV(-2), then —y € I1(—ty’(t)). Moreover, if
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fa * sp(s)ds = oo, then
t
y(t) = exp {—f sp(s)(1 + &(s)) ds} , (2.17)
and if fa “ sp(s)ds < oo, then

y(t) = y(co) exp { ft sp(s)(1 + 6(5))ds}, (2.18)

where e(t) — 0as t — oo,

Note that if fu ~ sp(s) ds converges in Theorem [2.11} then solutions under con-
sideration tend to a positive constant, whereas if it diverges the representation
does not imply in general that

t
y(t) ~ y(a) exp {— f Sp(s)ds}

ast — oo, see e.g. (2.19). A half-linear extension of the above result and related
observations are presented in Section[3.6, while in Section[2.7lwe offer a “4-th order
extension.” In Section 5.5 we discuss this type of formulas in connection with the
so called nearly linear equations.

The following result is an extension of the previous theorem to the case of RV
solutions.

Theorem 2.12 (Geluk [45]). Assume L(t) := t*p(t) = A — 0 as t — oo, where A > 0 is
a constant. Let y be an eventually positive decreasing solution of (2.2). If L € SV, then
~%y(t) € T(—HE y(B))) and

1 'L
y(t) = 9 exp {_28 1 ‘fa g)(l + &(s)) ds},

where ¥ > 0 and A are related by 3(S +1) = A, and e(t) - 0ast — oo.

A remark analogous to that after Theorem holds also here. Further, see
the remark after Theorem which is concerned with certain generalization of
the above theorem.

The class IR, opens further possibilities in obtaining more precise information

about considered solutions y of (2.2). The following statement is a refinement of
Theorem

Theorem 2.13 (Geluk [45]). Assume t?p(t) — 0ast — oo. Let y be an eventually
positive decreasing solution of 2.2). If —t*p(t) € TI(h), then —y € TRy (v, w) with
o(t) = —ty'(t) and

w(t) ~ ty () + 2y (t) ~ (W(t) + P2y (D)
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as t — oco. The following three cases are possible:
() If [ s°p?(s)ds = oo, then

t t
y(t):exp{— f sp(s) ds + f (s3p2(s)+h(s)/s)(1+£(s))ds}, (2.19)

where (t) > 0ast — oo,
(ii) If [ s°p*(s)ds < coand [ sp(s)ds = oo, then

t 00
y(t) = exp {— f sp(s)ds + C — ft (s°P*(s) + h(s)/s)(1 + &(s)) ds}, (2.20)

where C € R is a constant and e(t) — 0 as t — oo.
(iii) Iffa sp(s) ds < oo, then

y(t) = y(co) exp { ft sp(s)ds — ft (s°p*(s) + h(s)/s)(1 + &(s)) ds} (2.21)

where e(t) > 0ast — oo.

Also in this setting we have an extension to the case of regularly varying
solutions.

Theorem 2.14 (Geluk [45]). Assume L(t) := t*p(t) = A — 0 as t — oo, where A > 0 is
a constant. Let y be an eventually positive decreasing solution of (2.2). If L € I1(h), then
—t%y(t) € TIR, and

CVexpd L ft@
yt)y =t exp{ 28+1), s ds

1 Phis) + (29 + 1)71L2(s)
21y f 5

(1 + &(s)) ds},

where S > 0 and A are related by 3(9 + 1) = Aand e(t) - 0ast — oo.

Under the conditions of Theorem the linearly independent solution x(t) =
y(t) fa t % ds satisties x(t)/t € Il. A representation can also be given. For example,

under the additional condition fa * sp(s)ds = oo,

t
x(t) =t(1 - 2t2p(t)(1 +0(1))) exp {f (1+0(1))sp(s) ds}.

A similar representation can be given in other cases.
Assuming p € RV(-2) and #*p(t) — 0 as t — o it follows from one of (2.17)
and (2-18) that —y € [1(—ty’ (). Similarly —t?p(t) € T1(h), *p(t) — 0 as t — oo, and
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one of (2.19), (2.20), (2.2T) imply —y € IIRy(v, w). In the first case of Theorem 2.11]
relation (2.17) implies

t
¥(O) = y@) exp {—<1+o<1>> | sp(s)ds}

but the last representation does not imply —y € IT any more. A similar remark
applies to the other expansions. In Theorem it follows from [11, Theorem 3]
that 2p(t) ~ ftoo h(s)/sds as t — oo, hence in (2.20) and in (2.21))

f ) w ds = (1 +0(1)£p(t)
t

ast — oo.

We finish this section with refinements of the results for RPV(c0) solutions of
using the classes B8V and I'. The core of the following result is due by Omey
and appeared in [47| [130} 131, 133]. Later it was extended to the half-linear case
and additional observations were made (some of the being new also in the linear
case), see Section Denote

M* = {y: yis a solution of ,y() >0,y (t) > 0 for large ¢}

and
ML ={yeM": tlim y(t) = oo}

Theorem 2.15 (Omey [47, 130, 131} 133])). If 1/ fp € BSYV, then 0 # M*" = M{, C
I'(1/+/p).

A half-linear extension of the above theorem is presented in Subsection
Note that, under the assumptions of the theorem, for a solution y € M* we
have
y'(®)

lim ———— =1

22 \p@®)y(h)
If p € C!, then the assumption from the previous theorem — in view of the
properties of BSV functions — yields (1/+/p(t))’ = —p'(H)p~>/*(t)/2 — A, where
A =0,ast — oo, cf. Hartman, Wintner [54]. If A > 0, then we obtain regular

variation of the solution; see Omey [130]. See also the discussion around equation
(2.39).
Let y be a solution as in the previous theorem and consider the linearly inde-

pendent solution
|
x(t)=C f ——ds,
¢ YAs)

C > 0. Note that lim;_,., x’(t) = 0 and x is nonprincipal solution while y is principal
solution. From (1.25) we get x € T'_(1/+/p). Moreover, x’(t)/(+/p(t)x(t)) — -1 as

t — oo.
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In the following considerations (Omey [130, [133]) we get a second-order result
by taking a closer look at H(t) := y(t)/h(t) — y’(t), where h > 0 is defined by
h2(t)p(t) = 1.In order to obtain a rate of convergence result we assume that #'(t) < 0
for large t and that

—h" € SC(h).

Introduce the functions 1 and G by

t
u(t) = exp {f % ds} and G(t) = u(t)H(?).

Since h'(t) — 0, we have h € SN and u € I'(h). Also we have
U0
h(t)

Note that G’(t) > 0 for large t and G’(t) = u(t)(+/p)’ y(t). [If (4/p)”” > 0, we have that
G”(t) > 0 and G’ is nondecreasing.] It is not difficult to see that

G'(t) = y(@).

G (t + Ah(t))
G'(t)

so that G" € I'(h/2). Now this implies that G(t) ~ G’ (t)h(t)/2. We conclude that

u(Hh' ()y(t)
2n(t)

and then also that H(t) ~ —h’(t)y(t)/(2h(t)). It follows that
noy® e

— exp(2A)

G(t) ~ —

y(t) 2’
> 0 _ 1 40
y&) 1T i !
v~ T gy
where ¢(t) — 0. Integration between t and Ah(t) gives
y(t + Ah(t)) B
T = A=NL(t)+ (),
where A
_ h(t)
w0 = [ (i 1)
(" W (t + sh(t)h(t)
Iz(t) = ‘fov (1 + E(t + Sh(t)))m
We get (see (1.28))

I (£)A2

Li(t) ~ -
1() > s

L(t) ~ I (A,
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It follows that

t+ Ah(t 2
ylt+ Ah(f)) ; @ ®) exp(—/\)) ~ (B (A - %)
Since I’ (t) — 0, we obtain
y(t + Ah(t)) N1 ~ /\_2)
—y(t) exp(=A) =1~ K (t) ()\ > |

2.6.2 A different approach

Similarly as in the first part of the previous section also here we obtain more
precise information about (slowly and regularly varying) solutions of (2.I). While
previously the considerations were based on I'l-variation here we offer an alterative
procedure. Besides one method of successive approximations used in the proof of
an auxiliary proposition, the properties of regularly varying solutions are the only
essential tool.

To determine asymptotic behavior of solutions under consideration of equation
(2.1), due to representations in Theorem 2.2]and Theorem [2.3} since Lo(t) ~ 1/((1 -
91)L1(t)), one has to do it for L1 only. In principle the same procedure applies for
both slowly and regularly varying solutions. However, we consider separately
two cases: A =0and A # 0, —00 < A < 1/4 (see [2.7)). The reason is that in the
former case one obtains a more general result than in the latter one.

We begin with an important auxiliary result which utilizes some of the ideas

of Proposition 2.1 on p.

Proposition 2.2 (Howard, Mari¢, Radasin, [57, [105]). Let the functions P and h be
defined as Proposition If there exists a continuous decreasing function q(t) such that

f ) h2(s)ds < q(t)h(t) (2.22)
t
and

0<gq(t) <C<1/4, (2.23)
and if for some n € N

f 7" (Hh(t) dt < oo, (2.24)

then the solution y of given by satisfies
t
¥(b) ~ Bexp { [ @o-26) ds}

ast — oo, where Zo(t) := 0, Zy() := = [ (P()=Zp-1(s))* ds,n € N, P(¢) := [ p(s)ds,
B is some positive constant, but one may take it to be 1.
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Note that in general solutions y in the previous proposition need not to be
slowly varying. But as established in Theorem these are such under the
condition (2.6). This, in addition, implies the existence of a function g(t) satisfying
(2.22) and @2.23) by taking h(t) = q(t)/t. Consequently, we get the following
statement.

Theorem 2.16 (Howard, Mari¢, Radasin, [57, [105]). Let be fulfilled. If condition
for some n € N ([2.24), being here of the form f = (1) /tdt < oo holds, then two linearly
independent solutions of y1(t) = Li(t), y2(t) = tLy(t), where L1, L, € NSV with
Lo(t) ~ 1/L1(t), possess the following asymptotic representation for t — oo

t
ya(t) ~ exp { f (P(s) = Zn-1(s)) ds},
! (2.25)

¢
ya(t) ~ texp {—f (P(s) = Z-1(s)) dS},
and ty () /y1(t) — 0, ty;(8)/y2(H) — 1.
By Theorem condition which can be written in the form

gb(t)::tI p(s)ds—A —0 ast— oo, A#0,

implies the existence of two linearly independent NRV solutions y;(f) = t%L(t),
i =1,2, 91 < 9, being the roots of 92 -9 + A = 0. Next we describe behavior
of these solutions in a more precise way. The result was firstly proved in Geluk,
Mari¢, Tomic¢ [48] for the case p(t) < 0. The general case was treated in Mari¢ [105].

Denote t
o(t) = exp {f 251 + $6) ds}.
1

S

Theorem 2.17 (Mari¢ [105]). Let A € (—o0,1/4), A # 0. If
0o .2
f ) S(S) ds < oo, (2.26)

then (2.1)) possesses linearly independent solutions y1, yo satisfying

t 00
yi(t) ~ A exp {f; (@ + 2811; % . @ dT) ds}, (2.27)

£

20~ T sn 0

and y!(t) ~ Siyi(H)/t, i =1,2,as t — oo.
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In Geluk, Mari¢, Tomi¢ [48] Theorem 1.2] the condition of integrability is
replaced ¢ € SV. That result can also be seen a a generalization of Theorem [2.11]
and Theorem

Note that in the asymptotic representation formula two summands oc-
curring in the exponential function need not in general to be of the same order or
growth and consequently none of these can be disposed of. This is exemplified by
the result which follows where also by strengthening the conditions, the behavior
of solutions becomes much more legible.

Theorem 2.18 (Mari¢ [105]). If in addition to (2.26) one has

C o) [ o(Dlp(D) -
L a0 . = dr dt < oo, (2.28)
then t
1
yi(t) ~ £ exp {1 o3, j; ¢§S) ds} (2.29)
ast — oo,

If ¢(t) tends to zero sufficiently fast, e.g. like some power t~°, 6 > 0 (or faster),

then f ' ¢(s)/sds converges and becomes yi(t) ~ Bt’1. From that point of
view, the following simple (and easy to apply) observation which uses properties
of RV functions is of interest. If ¢(t) = O(Py(t)) as t — oo, where ¢g € SV satisfies
(2.26)), then the behavior determined by holds.

In the special case of p(t) < 0, the root 9 is always negative. Therefore, by the
use of inequality o(t)/ o(s) < (t/s)**1*2¢, which holds for anye > 0andt > s,5 > s0(¢),
condition can be replaced by the simpler one

f () ft li(;)ldsdt<m.

Theorem (simplified by this remark) then extends the following result of Mafik
and Rab [117]. If for some ¢ > 0

f tHp(t) — c/t?|dt < oo,
a
then has a pair of solutions y1, y» such that
yi(t) ~ t7% and y/(f) ~ 9;t%71, (2.30)

where 9; are the roots of 92 — 8 — ¢ = 0. Observe that if we put Y(f) = H(p(t) — ct2),
then the preceding condition implies

‘[awfsmll’b(%)ldfds<oo and ftw|1,b(s)|ds—>0
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ast — oo. Consequently for t — oo,

Stft lwsﬂdsg‘[ (s)|ds — 0

and also ¢(t)/t = ftoo ¢(s)/sds is absolutely integrable over (a,c0). Therefore
all conditions of Theorem are fulfilled and the result follows. This illus-
trates again kind of generalization we have: The slowly varying function L(t) =

lp(6)l = ‘tftm p(s)ds — ¢

exp {ﬁ fa t P(s)/s ds} in Theorem 2.18 multiplying by #°! is in the result by Maiik

and Réb the special one which tends to a constant as t — co.

In the rest of this section we assume p(t) < 0 and again we study slowly
varying solutions. Of course, in this special case asymptotic representation of
solutions remains the same as before (i.e., (2.25)). However here if y; is a SV
solution we know according to the results of Section that it is normalized
and decreasing. Further, by the Representation Theorem, it is of the form y;(t) =

exp {— fa : n(s)/s ds}, where 1(t) is positive and tends to zero as t — oo. It also

satisfies the integral (Riccati type) equation

0 0 2
n(t):tI p(s)ds—tIL (@) ds.

Furthermore by Theorem condition (2.6) is fulfilled. Therefore by putting
Z(t) = P(t) = n(t)/t and Z,(t) — P(t) = nu(t)/t, n € IN, where Z is a solution of
(2.5) and P(t) = ftoo p(s) ds, solution y; has the form and if a condition of the
type holds, the asymptotic representation for y; will follow. Since condition
is necessary and sufficient for the existence of SV solutions, one can reverse
the above argument: Assume first holds and then continue as above. It is
worthwhile mentioning that not only for the existence but also for the asymptotic
representation of SV solutions, condition is the sole one needed. Properties of
SV solutions do the rest. Condition (2.24) is only a technical one. We emphasize
here also that in contrast to the general case (no sign condition on p) where all
conditions that appear, in particular, refer to functions / and g which have
to be constructed, whereas here those conditions can be expressed in terms of the
known function P(t) as defined by (2.3).

Observe that condition (2.6) and the negativity of p imply that for any ¢ > 0
there exists ty such that for t > ty, one has

f ) P2(s)ds < ¢|P(t). (2.31)

t

For, by a partial integration

f ) P?(s)ds = —tP%(t) + 2 f ) s(—P(s))(—p(s)) ds
t t
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and (2.31) follows.
Put

Up(t) := ft ) P2(s)ds, Ups(t) :=2 ft ) —P(s)U,(s)ds, n € N.

Theorem 2.19 (Mari¢, Tomi¢ [105,115]). If for some n € N

fm U,(s)ds < oo, (2.32)

then for any SV solution y; of with p(t) < 0 and for the linearly independent
solution the asymptotic representation (2.25) holds.

Condition might be cumbersome to verify. It can be replaced by a simpler
in general a cruder one, as it is done in corollary below.

Estimate (2.31) implies the existence of a positive continuous function g(t)
decreasing to zero and such that U (t) = ftoo P2(s)ds < q(t)|P(t)|/2. Then inequality
Uy1(t) < ely(t) with g(t) replacing ¢, leads to U,(t) < g"(t)|P(t)]. Hence the
previous theorem implies the following statement.

Corollary 2.4. If for some n € IN, f ~ g"(H)|P(t)| dt < oo, the asymptotic representation
(2.25)) holds.

For comparison purposes we now recall the result by Hartman and Wintner
([53] Chapter XI, Ex. 9.9-b]); note that we utilized it already earlier, see the text
before Theorem[2.11] Let p(t) be a continuous complex function defined for t > a. If

for some a € [1,2] f oo 22~ p¥(#)| dt < oo, then equation has a pair of solutions
such that

t
yi(t) ~ exp {f sp(s) ds} and ty(t)/y1(t) = 0,
? (2.33)

t
y2(t) ~ texp {—f sp(s) ds} and tyy(t)/y(t) = 1

ast — oo.

The results for the derivatives show that when y4, y, are real, they respectively
are NSV and NRV(1).

E.g. for p(t) < 0 Theorem gives the above behavior for y; and y, with

n = 1. For, y1(t) ~ exp { fa t p(s)ds;. By integrating partially and then using
one obtain the above behavior for vy, similarly for y, and for derivatives.

Instead of Hartman-Wintner conditions we have by for n = 1, again after
a partial integration, fa 'sp2 (s)ds < co. These two conditions are not comparable in
general. However, for the rather general example p(t) = (t)/t> where &(t) is almost
decreasing, their condition is reduced to f * &%(s)/sds and ours to f * €2(s)/sds <

o0. They coincide for @ = 2 whereas for the remaining values of « it might happen
that the latter is fulfilled but the former is not.
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The asymptotics of solutions for t — oo of the type we consider here is obtained
for the more general system y’ = [A + B(t)]y, where A is a constant n X n matrix
whose characteristic roots are all simple and the continuous matrix B(t) is such
that f * |B(s)| ds < oo and hence for the n-th order equation

Y + by + -+ ba(t)y = 0.

Compare with Coppel [23, Chapter IV, Th. 2, Th. 3]. We formulate explicitly the
result for the n-th order equation with n = 2, bi(t) = 0, ba(t) = p(t), in order to
compare it with the present ones, e.g. that of Theorem when p(t) < 0: If the

function p(t) is continuous for t > tp and — f * sp(s) ds < oo, then equation (2.1) has
two linearly independent solutions y1, ¥, such that

i) =1, yat) ~t, ty1(t) = 0, yyt) - 1

ast — oo. On the other hand, Theorem withn =1, gives, as mentioned above:
If f ® sp2 (s) ds < oo, then for the above mentioned solutions y1, y2 one obtains (2.33)).

But in (the special case of) the Coppel theorem the integral f * sp(s) ds converges,
this is to say that the SV functions exp {i fa t sp(s) ds} become the special ones

which tend to a constant at variance with the present result where these can be
completely general ones.

2.7 A note about higher order equations; an alternative
approach to second order equations

At the end of the previous section we mentioned the concept of a higher order
equation. Here we consider a general n-th order linear differential equation again,
and briefly describe the approach by which it was investigated in Rehak [148]. The
main ideas are simple: To apply the classical Poincaré-Perron type result [138,/140],
to find a fundamental set of real solutions, and to use a suitable transformation.
We will see that consequences of the main statement can yield known results (in
particular for second order equations); the method however is different.

For a given function 7, we define the operator D as D.u(s) = ’C(S)%. Further,
we set Du(s) = T(s)%bﬁ‘lu(s), n € N, with ®Y = id . Consider the linear equation

DM+ 1 (5) D u + -+ 31 () Dot + do(s)u = 0, (2.34)

where dy, .. .,d,-1 are continuous functions and 7 is a positive continuous function
on [a, ).

Theorem 2.20 (Rehak [148]). Let lim;_,o, @i(s) = A;, i =0,...,n—1, and g; be the roots
of 0" + Au 10"+ + Ao+ Ag = 0 all assumed to be real and of distinct moduli. Let
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Then equation (2.34) possesses a fundamental set of (real) solutions {uy, ..., u,} such that
ui e NRVy(oi), i=1,...,n,

where w(s) = exp { fa ° % dz}. Every nontrivial (real) solution u of (2.34) satisfies
[ul € NRV ,(0m) for somem € {1, ..., nj.

Note that one important step of the proof consists of transformation of equation
(2.34) into

dr y dn—l

dm + an—l(t)

Yy v )Y 4 ags)y = 0 (2.35)
de-1 Mgy TS = ’
by means of the relations s = &(t) and u(s) = y(E71(s)) = y(t), where & is defined as
the inverse of the function s — fa ’ % dz.

Theorem can be applied in various ways. We mention several corollaries

which are related to the results presented in this text.
Consider first the second order equation (such an equation is considered e.g.
in (2.8))
u” + bi1(s)u’ + bo(s)u = 0, (2.36)

where by, by are continuous on [a, 00).

Corollary 2.5. Let there exist a function T with the properties

7 € CY([a, 0)), 7(s) > 0 for s > a, and j; %z) dz = o
such that
lim (t(s)b(5) = 7)) = A1 %0,

lim T2(s)bo(s) = Ao,

where ;X% > 4Ag. Then equation (2.36)) possesses a fundamental set of solutions {11, us}
such that

Uu; € NR(V(U(Qi)/ i= 1/ 2/

where 012 = % (—A1 + /A% - 4A0) and w(s) = exp {f; % dz}. If u is a nontrivial (real)
solution of (2.36)), then |u| is normalized regularly varying with respect to w of index o

or 2.

If we choose 7(s) = s, then w(s) = s (up to a negligible multiplicative constant)
and NRYV, = NRV. Hence we get the following corollary. Note that with this
choice, the function s = £(t) defining the new variable in the proof of Theoremm
becomes &(t) = e!. Recall also the two useful relations which hold generally:
=& o0& and w = expo&l.
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Corollary 2.6. If

lim sby(s) = Ay +1# 1, lim s?by(s) = Ag (2.37)
S— 00 5—00

with A2 > 4Ay, then equation 2.36) possesses a fundamental set of solutions {uy, us)
such that u; € NRV(0i), i = 1,2, where g1, 02 are as in the previous corollary. If u is a
nontrivial (real) solution of (2.36), then |u| is normalized regularly varying of index o1 or

02

A more special choice in the previous corollary, namely by(s) = 0, yields the
existence of normalized RV solutions of the indices (1 + 41— 4A0) /2 to the equa-
tion 44 S t bo(s)u = 0 provided lims_, s 2bo(s) = Ag € (—o0,1/4). Recall that using a
different technique the same result was obtained by Mari¢ and Tomic¢ [113] under
the condition by < 0, see also Corollary[2.2} This result was in essence first discov-
ered by Omey in [130] (with additional conditions) and formulated for solutions
tending to infinity. Later, the sufficient condition from [113] was improved and
expressed in terms of lims_, s fs * bo(z)dz = Ap, and this integral condition was
shown to be also necessary for the existence of RV solutions, see Theorem 2.1]

Next we observe how Corollary[2.5yields the result for a second order equation

in the self-adjoint form
(r(s)u’) +p(s)u =0, (2.38)

where p € C,r € C, (s) > 0 on [a, ), when some special (and somehow optimal)
setting is made. Recall that this equation was considered also in Section

Assume first f 1 dz = oo0. Set w(s) = fa ’ T(l—z) dz. Because of the relation between
w and 7, which reads as T = 7, it means that 7(s) = r(s) f el dz. Equation (2.38)
can be written as (2.36), where b = r—r, and by = g. Since t(s)b1(s) = 7'(s) fa %Z) dz,
T7(2z)=1-7(2) f: % dz, and

s 2
T2(s)bo(s) = (s)r(s)( f (1 ) )

we have that (4.49) reduces to —1 = A; and (4.50) reads as

s 2
sh—>r£10 p(s)r(s) (f % dz) = Ao.

Similarly, if fa " L dz < oo, then we set w(s) = 1/ fs r(lz) dz, and (4.49) reduces to
1 = Ay, while (4.50) becomes

00 2
511)111O p(s)r(s) (f % dz) = Ap.

Thus, applying Corollary 2.5 we get the following statement.
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Corollary 2.7. (i) Let faoo r(l—z) dz = co. Denote R(s) = fﬂs % dz. If

lim p(s)r(s)R*(s) = A € (—oo, %)

then equation (2.38) possesses a fundamental set of solutions {uq,un} such that u; €
NRVr(0), i = 1,2, where 915 = (1 + V1 - 4A). If u is a nontrivial (real) solution of
(2.38), then |u| is normalized regularly varying with respect to R of index ¢ or 2.
(ii) Let fﬂw r(l—z) dz < oo. Denote R(s) = f:o % dz. If
lim p(s)r(s)R2(s) = A € (—oo, }1)
S—00

then equation (2.38)) possesses a fundamental set of solutions {uq,u2} such that u; €
NRVr(0:), i =1,2, where g1, = (—1 + V1 - 4A). If u is a nontrivial (real) solution of
2:38), then |u| is normalized regularly varying with respect to 1/R of index @ or @,.

As we could see in Theorem using a different approach (more precisely,

a combination of the Riccati technique with the contraction mapping theorem),
Jaros and Kusano in [60], showed that the condition

lim R(s)f p(z)dz=A < }1
5—00 S

is sufficient and necessary for the existence of a fundamental set of solutions with
the properties from the last corollary, provided fa * r(l—z) dz = co. Since — provided

the latter limit exists and fa * p(z) dz converges — the L'Hospital’s rule yields

B RE) [ p0)dz = Jim per R0

we see that we offer an alternative (and quite simple) approach to the result
closely related to Theorem 2.8/ Similarly, if we assume fa “ % dz < o0, then the
necessary and sufficient condition for the existence of generalized RV solutions

from Theorem 2.8 reads as

Slgg(ﬁ(s))-l f ) R*2)p(z)dz = A < B

o~

To see a relation with Corollary [2.7}-(ii), note that

i@ [ R@pe) dz = lim poroR )

S

provided the assumptions for the use of the L'Hospital rule are satisfied.

Corollary 2.5 can be utilized to study self-adjoint form also in the fol-
lowing, slightly different, way. We set 7(s) = s, which yields w(s) = s. Re-
call that equation can be written as (2.36), where b; = % and by = E.

r
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Since then 7(s)b1(s) — 7/(s) = s:;s) — 1 holds, condition (4.49) can be understood

as r € NRV(A; + 1). Condition (£50) reads as p(s) ~ Ags~2r(s) which among
others means that also p is required to be regularly varying, namely of index
(A1 +1) =2 = Ay — 1. Thus we get the following statement.

Corollary 2.8. If
r € NRV(Ay +1) and s°p(s) ~ Aor(s) as s — oo,

with A% > 4A,, then equation (2.38) possesses a fundamental set of solutions {u1, ua} such
that u; € NRV(0;), i = 1,2, where g1, 02 are as in Corollary [2.5]

We conclude this part devoted to second order equations with showing another
way how Corollary[2.5|can be utilized. In addition, we present related observations
and indicate relations with known results. We consider the equation

u’ =p(s)u, (2.39)

where p > 0, p € CL. If by = 0 and by = —p, then (2.36) reduces (2.39). Clearly,
equation (2.39) is nonoscillatory. Set T = 1/ y/p. Then condition (4.49) reads as

_1 !
li =A
Sgg( Jp<s>] 1

and condition (4.50) reduces to Ay = —1. Assume first A; # 0. Then fa * % dz = o
and (2.39) possesses solutions u; € NRV,(9;),1 = 1,2, where

1 [
\91/2 = E (—A1 =+ A% + 4)

(with 81, # —1,0,1) and w(s) = exp { fa ’ p(z) dz}, by Corollary Hence, % ~
Vi 4/p(s) ass — oo, i =1,2. Since u; is positive, ulf is eventually positive or negative.
We have

(2.40)

w/(Sui(s) _ pOuis) 1
@) 2?8

2
i =1,2. We then get u; € R(V(%), i = 1,2, cf. Omey [130] where increasing

1
solutions are considered. Because of monotonicity of u’, we have

£1, (2.41)

2
uieNR(V( i ] (2.42)

i = 1,2. Observe that condition with A; # 0 implies the existence of the limit
lims_, 0 52p(s); compare with the latter condition in (2.37). The expected correspon-
dence between the indices of regular variation in (2.42) and in Corollary [2.6| with
b1 = 0and by < 0 can be now easily revealed; the details are left to the reader.
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Assume now A; = 0in (2.40) and f p(z) dz = 0. Then by Hartman-Wintner
[54] Paragraph 24], (2.39) has a pair of solutions satisfying

u(s) ~ = +/p(s)u;(s) (2.43)

ass — oo, 1 = 1,2. Notice that the roots of the associated characteristic equation
0* —1 = 0 are 1, and so Corollary [2.5/can not be used. In terms of generalized
regular variation, we can write u; € NRV (1), where w(s) = exp { fﬂ ) p(z) dz}.
For increasing solutions, this statement was rediscovered in [130] by Omey. In
addition, by the same author, relations with the class I' were shown and condition
(2.40) with A; = 0 was relaxed to 1/ 4/p € B8V (without requiring p € CYin [131],
see Theorem Other type of relaxation of with A1 = 0 can be found in
Hartman-Wintner [54], namely to the condition

Inp(s +R/pE _

sup Stk
O<k<co ] + fs \p(z) dz

as s — 0, which is sufficient and also necessary for equation (2.39) to posses a pair
of solutions satisfying (2.43). Let us show how the classes I'(+1;v) are involved.
In the set {1, up} satisfying (2.43), clearly one solution must be increasing (say u1)
ul’ (s)ui(s)

@O
i =1,2. Hence we get u; € I'(0;;v),i = 1,2, where 01 = 1,00 = =1, and v = |u/u/|.
Thus

while other is decreasing. Similarly as in (2.41), we obtain ~1lass — oo,

1
u =I(o;p2),

i=1,2,by (2.43). From the transformation relations between u(s) and y(t) (see the
text after (2.35)) we obtain a pair of Poincaré-Perron solutions {y1, y2} of

dy
1 + al(t) -y=0 (2.44)
satisfying —5 dy(t) ﬁ — 1 ast — oo, where a1(t) = #&1(E(t)) = —1/(&(t)) — 0 as

t = oo; & belng the inverse of s — f ° (1) dz. In this connection we recall the

result [23, Chapter IV, Theorem 2] according to which (2.44 - ) possesses a pair of
solutions satisfying y(t) ~ €', y2(t) ~ e™*, dﬂlt(t) e, dﬁt(t) ~ e ast — oo provided
the (stronger) condition fa * la1(z)|dz < oo is fulfilled. Clearly then y; € I'(1;1),
y2 € I'(=1;1). Another result of Coppel ([23, Chapter IV, Theorem 14]) says that if

p > 0and fa * lp~32(t)p” (t)|dt < oo, then (2.39) has a fundamental set of solutions

satisfying
ui(s>~p‘”4<s>exp{i f pl/z(t)dt},
a

uj(s) ~ p'/*(s) exp {i f et dt}
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ass —oo,i=1,2.

For completeness, we mention another two classical results which are somehow
related to the topic of this paragraph. Hartman’s result [53] Ex. 9.9-b] is recalled
in (2.33). Matik’s and Réb’s statement reads as The conditions in these
statements (including Coppel’s one) differ among each other but lead to the same
type of conclusions. As we could see above, such a behavior is typical for regularly
(or rapidly) varying solutions. Concerning the requirement imposed on p, the
behavior of s?p(s) (or, possibly, of s fs * p(t)dt or of s fs s p(t)dt) is crucial in that
respect. Recall that the existence of the finite limit lims_,« s?p(s) leads to a regularly
varying solutions while lim,_,c szp(s) = oo yields rapidly varying solutions of
(2.39), see Section The fact that a solution is a RV or RPV function is less
precise than the formulas in the quoted results, but requires milder hypotheses.

Next we examine the third order equation in the self-adjoint form
u”"" +2b(s)u’ +b'(s)u =0, (2.45)

where b € C!([a, )). First note that this equation is not so special in comparison
with the general equation

" + by(s)u”" + by (s)u” + bo(s)u =0, (2.46)

as it might seem. Indeed, the second derivative term in (2.46) can always be
removed by the transformation

u(s) = v(s) exp {—% fs by(z) dz}

to obtain the equation v"” + 2b(s)v" + (b’(s) + ¢(s))v = 0. This form has frequently
occurred in the literature ([65} [157]), thus we can easily make a comparison. Our
method (which leads to the existence of generalized regularly varying solutions)
and is based on Theorem 2.20]applies also to general equation (2.46).

Corollary 2.9. If
lim (-s%b'(s)) = B < 1, (2.47)
S—00

then possesses a fundamental system of solutions {uq,us,us} such that u; €
NRV(0i), i = 1,2,3, where oy =1, 0o =1+ V1-B, 03 =1—- V1-B. Ifuisa
nontrivial (real) solution of (2.49), then |u| is normalized reqularly varying of index 1 or
1+ V1-Borl- V1-B.

In Jaro$, Kusano, Mari¢ [65], see Section — using a different approach
which is based on the correspondence of with certain second order equation
— it is proved that the statement of Corollary 2.9/ holds under the assumption
im0 fs “b(z)dz = B. A simple use of the L'Hospital rule shows how im-
plies this assumption. Note however that does not require the convergence
of [ b(z)dz.
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We conclude this section with observations related to the two-term fourth order
linear differential equation
u® +b(s)u =0, (2.48)

where b € C([a, 0)). Denote
G(x) = x* — 6x° + 11x* — 6.
Applying Theorem we get the following statement.

Corollary 2.10. If

9
lim s*b(s) = A (-—,1),
SLIEIOS (s) € 16

then equation (2.48) possesses a fundamental set of solutions {uq,u2, u3, us} such that
up € NRV(0i), i = 1,2,3,4, where g; are the (real) roots of G(o) + A = 0. Ifuisa
nontrivial (real) solution of (2.48), then |u| is normalized regularly varying of index o or

02 OF 03 OF Q4.

Note that as a by-product of Corollary[2.10|we get a nonoscillation criterion for
equation (2.48). For related criteria see [157, Chapter 3].

Let us now examine slowly varying solutions of where b < 0and A = 0.
Let us write the equation in the form

u® = p(s)u, (2.49)

ie, p = -b > 0. Since A = 0, the roots of G(g) + A = 0 are 0,1,2,3, and so
SVsolutions of indeed exist. Eventually positive solutions of are
eventually monotone and therefore a solution u € SV is eventually monotone.
It can be shown that SV solutions cannot increase. Hence, if we deal with SV
solutions, in fact, we deal with all positive decreasing solutions of (2.49), since
non-SV solutions are in RV(1) U RV(2) U RV(3). As for the existence of SV
solutions, the condition lims_, s*p(s) = 0 can be relaxed to

00

lim z*p(z)dz = 0. (2.50)

S—00

More precisely, it then holds that any eventually positive decreasing solution u of
(2.49) is in NSV.

Next we give asymptotic formula for a solution u € SV under the assump-
tion p € RV(-4). Denote H(s) = s°p(s)/6. It holds H € RV(-1) and any of the

. L R . 00 .
possibilities, convergence or divergence of fa H(z) dz, can in general occur.

Theorem 2.21 (Rehak [148])). Let p € RV(-4) with L,(s) — 0as s — oo; L, being the
SV component of p. Then the set of eventually positive decreasing solutions of
(which is nonempty) is a subset of SV. For each solution u € SV (which is necessarily
decreasing) one has —u € I1(—su’(s)) and one of the following formula holds:
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(i) If fa “H (z) dz = oo, then u(s) tends to zero as s — oo and satisfies the formula

u(s) = exp {— fs(l +0(1))H(z) dz}.

(ii) If f:o H(z) dz < oo, then u(s) tends to a positive constant u(co) as s — oo and
satisfies the formula

u(s) = u(co) exp {foo(l +0(1))H(z) dz}.

The above theorem can be understood as a “fourth-order extension” of Theo-

rem

2.8 On zeros of oscillatory solutions, asymptotic behavior
of maxima and of eigenvalues

The problem of determining the asymptotic behavior of the number of zeros is an
old one and studied by many authors, see e.g. Hartman [53, Chapter XI]. Here we
show how the class of Beurling slowly varying functions can be utilized to obtain
some information about this behavior. The results were achieved by Hacik and
Omey [51], see also Mari¢ [105], Omey [130].

In this section we assume that p in is a positive and continuous function.

In the sequel, {t,}, t, — oo, denotes the sequence of zeros of a solution y(t) of
and N(I) the number of these in the interval I.

As an example, consider equation with p(t) = k2, k € (0, o). Every solution
of has the form y(t) = c; sin(kt) + c2 cos(kt), where c., c; € R. We see that this
solution has an infinite number of zeros t,, n € IN, which satisfy t,,1 —t, = n/k
and kt, ~ n as n — oo. This last statement says that the number of zeros less than
t, asymptotically equals +/p(t,)t,.

In the general case Titchmarsh [165], p. 146, proved that, whenever p(t) is
continuous and of bounded variation, there holds that

1 [ 1 (!
M@m‘gj\ﬁ@“f”+zhf”ﬁ%mﬂﬁ6w

We will discuss conditions under which we can relate the asymptotic behavior
of p(t) to that of N((0,t]), to that of the sequence of zeros {t,} and to that of the
sequence {t,+1 — t,}.

First note that if 1/ /p € B8V, then t2p(t) — o0 as t — oo so that equation (2.1)
is oscillatory.

Theorem 2.22 (Hacik and Omey [51]]). Suppose 1/ fp € BSV. Then
HNO,1) ~ L [ {p@E) dsast — oo,
(ii)) N((t,t + s/ \Jp(s)]) = £ + O(1) for each s > 0.




Chapter 2 67

From the properties of 8BSV functions we have that if 1/ yjp € BSV, then p
may be regularly varying and likewise belong to the class I'. This justifies the
following two corollaries.

Corollary 2.11. (i) If p € RV(a), a > =2, then N((0, t]) € RV ((a + 2)/2) and

N(O, 1) ~ ==t V)
ast — oo
(ii) If p € T((t)), then N((0, t]) € T(2h(t) and
N(O, 1) ~ Zh(1) yp()

ast — oo,

The proof of this corollary follows from the previous theorem and elementary
properties of the classes RV and I'.

If we replace t by t, and use lim, o /p(tu)(tn+1 — tn) = 1, we get the following
statement for the sequence of zeros.

Corollary 2.12. (i) If p € RV(a), a > =2, then t, \[p(t,) ~ n1(a + 2)/2 and

tne1 — By 2
n -

ty a+2
asn — oo,
(ii) I p € T(h(t)), then h(t,) W ~ nm/2 and
tny1 — tn
h(ty)
asn — oo,

Up to now we assumed 1/ \/m € BSV which implies #?p(t) — oo as t — 0.
When #2p(t) — A > 1/4 however may remain oscillatory. To deal with this
kind of equations we transform into a more suitable form. Generally, consider
the differential equation (2.9), r(t) > 0, t > a > 0. For a suitable function ¥ we can
define

y(®)

t
1
f = —————ds, ==—.
0= [ w0
With this transformation, (2.9) becomes

2

B HPENE =0, 0= &< )
where p(&) = [(rP’) + p‘l’]‘lf3r, see Willett [166| p. 597]. Now ¢, is a zero of y if and
only if &, = &(ty) is a zero of 1. Hence the number of zeros of y less than or equal
T is the same as the number of zeros of 7 less than £(T). Now Theorem yields
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Theorem 2.23 (Hacik and Omey [51]]). Suppose that p satisfies the conditions of Theo-
rem Then for equation we have

t
N~ 1 [ NFEIE @ ds

ast — oo,

In the case of we have r = 1. If we choose W(t) = Vt,a = 1, then & = Int
and p(&) = 2p(t) — 1/4. Hence we get

Corollary 2.13. (i) If p(t) = e*'p(e") — 1/4 € RV(a), a > =2, then

N((O, t]) ~ %lntw/ﬂp(t) -1 /4%

ast — oo,

(ii) If p € T(h), then

N((O, £]) ~ %Zh(ln £) A[2p(t) — 1/4

ast — oo,

This corollary of course remains valid when #2p(t) — co.

Omey in [130] studies also asymptotic behavior of the sequence {y?(s,)} of
successive maxima of 2, y being a solution of (2.1), s, denotes the value at which
ly(t)| reaches a maximum. For illustration, we present here one selected result.
Note that its proof uses some of the previous results in this section, the Sturm
comparison theorem and Wiman’s method [167].

Theorem 2.24 (Omey [130]). (i) Let p be a monotone function such that

tp'(t)
tli)r?o o0 a € (=2, 00).

Then the sequences {y'*(t,)}, {y~2(sn)} are in RV (a/(a + 2)).
(ii) Let p” € T'(h(t)) and
In(p(£))

lim —— =0.
= h(t) A/p(t)
Then the sequences {y"*(t,)}, {y~2(sn)} are in RV(1).

Omey [130] further studies the asymptotic behavior of the eigenvalues of the

linear operator
2

d
LZQ(f)—@

in (0, 00). Consider the differential equation L[y] = Ay, where A € R. A function
which satisfies this equation and also some boundary conditions (e.g. y(0) = 0,
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y'(0) = 0) is called an eigenfunction. The corresponding value of A is called an
eigenvalue. We will assume that g(f) diverges to infinity as t — oo, since the
operator £ then has an infinite number of eigenvalues {A,}; also the eigenfunction
associated with A, has exactly n zeros [165} p. 110].

In the theorem below it is examined how the distribution of the eigenvalues {A,,}
is determined by the function . We present the result without a proof; note just
that it utilizes the Sturm comparison theorem, an Abelian type theorem involving
RV functions, and some the previous results in this section. Let M(x) denote the
number of eigenvalues of the operator £ not exceeding x.

Theorem 2.25 (Omey [130]). Let g be a continuous, increasing function with q(0) = 0.
If g € RV(a), a € (0,00), then M € RV ((a + 2)/(2cx)). Furthermore,

A/ VB ~ t(w)
aTt

as t — oo, where B(-, -) denotes the beta function.

Under the conditions of this theorem, the sequence {A,} is regularly varying
with the index 2a/(a + 2) and

901/ ) ~ Ko (w)

aTt

asn — oo.

Solving this “asymptotic functional equation”, we can derive an explicit asymp-
totic formula for {A,}; we give a sufficient condition to do this (the proof uses the
concept of conjugate SV solutions). Suppose 4(t) = (tL(t))*, @ € (0,0), where
L € 8V. If for all real 3,

. LaLP@)
fim oy

then

a \2

1~ namn Az namn #7))"
"~ \B@E/2,1/a) T\ 8321/

as n — 09,
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Chapter

Half-linear second order
differential equations

3.1 Introduction
In this chapter we consider the half-linear second order differential equation
(DY) +pt)P(y) =0, D)= |ul*sgnu, a>1, (3.1)

Recall that the terminology half-linear differential equation (systematically used
by Bihari and Elbert for the first time) reflects the fact that the solution space of
is homogeneous, but not additive. The works of Mirzov [126] and Elbert [30]
are usually regarded as pioneering ones. A quite comprehensive treatment on
half-linear differential equations can be found in the book [28] by Dogly, Rehak.

We suppose that the functions 7, p are continuous and r(t) > 0 in the interval
under consideration. Many of the results for can be formulated under weaker
assumptions that the functions 1/, ¢ are locally integrable. However, since we are
interested in solutions of in the classical sense (i.e., a solution y of isa C!
function such that r®(y’) € C! and satisfies in aninterval under consideration),
the continuity assumption is appropriate for this setting.

Half-linear equations are closely related to the partial differential equations
with p-Laplacian. In fact, is sometimes called the differential equation with
the one-dimensional p-Laplacian. Recall that the a-Laplacian is a partial differential
operator of the form

Aglh = div(lqull“‘ZVu),

where, for u = u(x) = u(xq,...,xn), Vu = (%, el %) is the Hamilton nabla oper-

ator and, for v(x) = (v1(x),...,on(x), divo(x) = Zﬁl g—;(x) is the usual divergence
operator. If u is a radially symmetric function, i.e., u(x) = y(t), t = [|x||, || - || being

the Euclidean norm in RV, the (partial) differential operator A, can be reduced to

71
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the ordinary differential operator

_d
Cdr

There are at least another two ways how half-linear equations can be under-
stood. First, as a natural generalization of second order linear differential equa-
tions. Indeed, if @ = 2, then (3.1I) reduces to (2.9). Second, as a special case of
certain Emden-Fowler type equations, which are studied in the next chapter.

Some of the results will be formulated for the half-linear equation in a more
special form

Aqu(x) = 17N (N oy (1)),

(@) +pHP(y) = 0. (3.2)
An important role in some of the proofs will be played (not surprisingly) by the
generalized Riccati differential equation

w' +p(t) + (a - 1wl =0, (3.3)

which is associated to by the substitution w = ®(y’/y). Note that the Riccati
technique is extremely useful also in many other parts of qualitative theory of
half-linear equations, see Dosly, Rehak [28].

Basic classification and asymptotics of nonoscillatory solutions to half-linear
equations are discussed e.g. in Cecchi, Do$l4, Marini [19] and Chanturiya [20], see
also [28, Chapter 4].

The results in this chapter can be understood as a half-linear extension of
some of the results from the previous chapter, but there are also some original
formulas. However we should emphasize that due to the lack of the additivity
of the solutions space of equation (3.I), many steps in the proofs (if not the proof
entire) require a quite new approach or at least a highly nontrivial modification
comparing with the linear case. As an example of the problematic point we can
mention that there is no reduction of order formula for (3.1), and so we cannot
so simply construct a linearly independent solution provided one solution (with
some known properties) is at disposal.

3.2 RV and RSB solutions of half-linear equations

The results of this section are based on the paper [59] by Jaro$, Kusano, and
Tanigawa.

3.2.1 Auxiliary statement

Proposition 3.1. Put P(t) = ftoo p(s)ds and suppose that there exists a continuous
function h : [tg, 00) — (0, 00), tg > 0, such that lim;_,« h(t) = 0, |[P(t)| < h(t), t > to, and

f hP(s)ds < L AP, t>t, (3.4)
¢ a-1
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for some positive constant

a< %(“;1)%1. (3.5)

Then equation (3.2)) is nonoscillatory and has a solution of the form

t
y(t) = exp { f O o(s) + P(s)] ds}, t> to, (3.6)

to

where v is a solution of the integral equation
o(t) = (a - 1)f [o(s) + P(s)Pds, t> to, (3.7)
t

satisfying
v(t) = O(P(t)) as t — oo. (3.8)

Proof. Consider the function y defined by (3.6). Recall that if w is a solution of

generalized Riccati equation (3.3), then exp E@‘l(w(s)) ds} is a (nonoscillatory)
solution of (3.2). Hence, y is a solution of (3.2) if v is chosen in such a way that
w = v + P satisfies on [tg,o0). The differential equation for v then reads
v +(a—1)lv+P®)f = 0, which upon integration under the additional requirement
that lim;—,« v(t) = 0, yields (3.7). We denote by Cj[to, o) the set of all continuous
functions v on [ty, ©) such that

lo(®)]

[|[9]], = sup —= < .
" D)

Clearly, Cp[to, o) is a Banach space equipped with the norm ||9||;,. Let () be a subset
of Cp[to, o0) defined by Q) = {v € Cy[tg, o) : [v(t)| < (a — 1)h(t),t > to} and define
the mapping 7 : Q — Cy[to, o) by

Toit)=(-1) j;oo [o(s) + P(s)Pds, t> to. (3.9)

If v € Q), then
[T o(t)| < (a = 1)af f WP (s)ds < aPaP~th(t),

t

t > tp, which implies that

a-1\f-1
w) =a-1. (3.10)

T oll, < afalf~! < aﬁ(
aa
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Thus 7" maps Q into itself. If v1, v € O, then, using the Mean Value Theorem, we
see that

[T 01(t) — To2(t)

IA

(@-1) ft lon(s) + PO — foals) + PE)P|ds

IA

(@-1)p ft (@h(s))for(s) - va(s)l ds

[01(s) — v2(s)l
= 4f B(s) L =227
= « f; hP(s) 70 ds

< (B -1)a"h(b)llor - vally,
t > tg, from which it follows that
17701 = Toally < (B — DafaP oy - vallj.

In view of (or (3.10)), this implies that 7 is a contraction mapping on Q.
Therefore, by the contraction mapping principle, there exists an element v € Q
such that v = 7o, that is, a solution of integral equation (3.7). Thus the function
y(t) defined by with this v(t) gives a solution of on [tp, o). The fact that
v satisfies is a consequence of v € Q). This completes the proof. m|
3.2.2 RV solutions with different indices

The following theorem is a generalization of the main part of Theorem[2.2} Propo-
sition[3.1]is applied in the proof.

Theorem 3.1. Equation is nonoscillatory and and has two solutions y, and y, such
that y1 € NSV, yo € NRV(1) if and only if

lim gt f p(s)ds = 0 (3.11)
—00 t

Proof. If. Suppose that the condition from the theorem holds. Put

st f p(t)dt

Then ¢ is nonincreasing and tends to zero as t — oo. Let ty > 0 be such that

@(t) = sup : (3.12)

s>t

p(t)
ta—l

a—1
o(t) < i(“;l) and [P(t)] <

for t > to. Put h(t) = p(t)t'=. Then |P(t)| < h(t) holds and

00 00 p Bt
ft 1B(s) ds = ft (ffl) ) ds < o (fl()t)“—l = - i SURIOV0
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t > to. Consequently, by Proposition 3.1} (8.2) has a nonoscillatory solution of the
form (3.6) on [ty, o) with v satisfying (3.8). Since

1 o(t) = Ot* T h(t)) = o(1) and t*1P(t) = O(t* 'h(t)) = o(1)

as t — oo, we conclude that y is a normalized slowly varying function. The
existence of a solution y, € NRV(1) follows from the proof of Theorem
Only if. It follows from the only if part of the proof of Theorem O

The following theorem is a generalization of the main part of Theorem
As it can be easily seen, the previous theorem can be included in its statement,
but we prefer to distinguish these two results because the part dealing with the
existence of a SV solution uses different ideas. In fact, in the proof of Theorem
we consider only the nonzero roots of the associated algebraic equation, since the
case with the zero root is treated in the proof of the previous theorem.

Let A and A2, A1 < Ay, denote the two real roots of the equation

ANPF-A+A=0. (3.13)

-1
It is easy to see that (3.13) has two distinct real roots if and only if A <= (0‘ 1)a .

Clearly, A1 <0 < A2 if A< 0,and 0 < Ay < A2if 0 < A < 1 (2L 1) . Tt should be
noticed that a®1(1;) < a — 1 < a®1(A,).

Theorem 3.2. Equation is nonoscillatory and has two solutions y1 and y, such that
y1 € NRV(®Y(A1)) and yp € NRV(D~Y(A,)) if and only if

lim ¢4~ ft ) p(s)ds=A¢€ (—oo, % (“ — 1)a_1). (3.14)

t—o0 o

Proof. Only if. Let y; be solutions belonging to NRV(®71(A,)), i = 1,2. From the
representation theorem it follows that

i y’(t)

1 yi(t)
t_m ) =® " (A;), so that hm

t—co Y;(t)

=0, i=1,2 (3.15)

Put w; = ®(y’/y), i = 1,2. Then w; satisfies generalized Riccati equation (3.3), from
which, integrating on [f, 00) and noting that lim;_,., w;(t) = 0, we have

0 a1, (o) 00
= L(t) = (@ — 1) f 'SS% ds + o1 f ps)ds, i=1,2,  (3.16)
t t
for all sufficiently large t. Let t — oo in (3.16). Using (3.15), we conclude that

lim %1 f ps)ds=A; - A=A, i=1,2
t

t—o0
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If. Assume that (3.14) holds. Put w(t) = t*~1 ftoo p(s)ds — A and consider the

functions ;
_1[Ai + w(s) + vi(s .
yi(t) = exp {I O 1( S(azl ( )) ds}, i=1,2. (3.17)

Then the function y; is a solution of (3.2) on [t;, o) if v; is chosen in such a way that
w; = (Aj + w +v;)/t% ! satisfies (3.3) on [t;, ), i = 1,2. The differential equation for
v; then reads

vl - “T_lvi + “T_l (11 + () + ol —1A) =0, i=1,2. (3.18)
We rewrite (3.18)) as
-1 i _ _
o+ ad™(A; + a)t(t)) (a 1)01‘
a—-1 _
+ == [12i + w(®) + o - BT (i + w(toi ~ 1] = 0
and transform it into
, a-—1
(ri(t)oi)" + ——ri(OFi(t,v) = 0, (3.19)
where , .
LA (-1
ri(t) = exp {f ab” i+ )~ (@ 1) ds}
1 s
and

Fi(t,0) = |A; + o(t) + off = BO7HA; + w(t))o — AP, i=1,2.

It is convenient to express Fi(t,v) as Fi(t,v) = Gi(t,v) + z;(t), with G;(t,v) and z;(t)
defined by

Gi(t,v) = |A; + w(t) + o) — BOHA; + w(t))v — |A; + w(t)f

and z(t) = |A; + w®)f — |Alf, i = 1,2. Now we suppose that A # 0 in (3.14),
which implies A; # 0 for i = 1,2. Let fp > 0 be such that |w(t)| < |A]/4 for t > ¢,
i =1,2. This is possible because w(t) — 0 as t — oo by hypothesis. It follows that
%Mil <A+ w(®)] < %IAI-I fort > tp, i = 1,2. We observe that there exist positive
constants K;(@), Li(a) and M;(a) such that |G;(t, v)| < Ki(a)v?,

dG;

| v
and |z;(t)] £ M;(a)|lw(t)| for t > ty and || < |Ail/4, i = 1,2. In fact, the last two
estimations follow from the Mean Value Theorem, while the estimation for G; is a
consequence of the L'Hospital rule applied to G;:

(t,v)| < Li(a)lv] (3.20)

. Gi(t,o) 1. *Gi(t,0) p
lim = —lim =

= . PIF-2.
v—0 7]2 2 950 8’02 2(0( - 1) Ml * w( )l
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Let us examine equation (3.19) with i = 1. The following properties of r are
needed: r; € NRV(® (@) — (@ — 1)), limj, 71(t) = 0,

Coa—1 rl(s) rl(t) a-—1
1 ds = 1 1 = , 3.21
imow ), s =@ DlimLs B a-1-ad (M) (3.21)
a-1 (r 1( )
i z(s)ds =0 if z € C[0, ), and 11m z(t) = 0. (3.22)
tooo 11()
Let €1 be a positive constant such that £; < min{1,|A4|/4} and
2(a—-1)
K L M <1, 2
- 1-ad (1 )[ 1(@) + La(@) + My(a)]eq (3.23)
and choose t; > f; so that
ol < &3, t>1t, (3.24)
and
- * 2 -1
a-1 (N6 4 (@-1) > h. (3.25)

ri(t) J; s Ta-1-ad (A’

Note that is an immediate consequence of (3.21).

Let Cy[t1, o0) denote the set of all continuous functions on [t1, o) which tend
to zero as t — oco. Then Cy[t;, ) is a Banach space with the sup-norm |[v|| =
supi{lo(t)| : t > t;}. Consider the set 01 C Cy[t;, o0) defined by Q1 = {v € Co[t1, ) :
[o(f)| < €1, > t1} and define the integral operator 77 by

f h S)F1 (s,v(s)) ds,

t > t1. It can be shown that 77 is a contraction mapping on ;. In fact, if v € ()4,
then using the above inequalities we see that

()0 = 5

T < S 19 165 o + 19 ds
< 19 6 w026) + My @)t ds
< ‘;‘lzt)l rl()(Kl(a)+M1(a))el ds
< — 20D i)+ My@)?,

a—1-ad1(A)

t > t;. Since Fi(t,v(t)) — 0 ast — oo, we have lim;_,(770)(t) = 0 by (3.22). It
follows that 77v € 4, and so 77 maps €; into itself. Furthermore, if u,v € Q,
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then using (3.20) and (3.23), we obtain

a-1 [ r(s)

(T10)(®) = (Tiw)®)] < —ZIF1(5,0(s)) = Fi(s, u(s))| ds
Tl(t) ¢ S

= 5 | 26k 0) - Gats ol ds
2(a—1)

< sl @ele -l

t > t;, which implies that
2(a = 1Ly (@)
710 - Thull < ——24 oélle = ull

Inview of (3.23), this shows that 77 is a contraction mapping on Q;. The contraction
mapping principle then ensures the existence of a unique fixed element v; € (g
such that v; = 7701, which is equivalent to the integral equation

a—1 ("nl)
ri(t) J; S

t > t;. Differentiation of shows that v; satisfies differential equation (3.19)
withi =1 on [t;, 00) and so substitution of this v; into gives rise to a solution
y1 of half-linear equation defined on [t;, ®0). Since lim;_,.o v1(t) = 0, from the
representation theorem we have y; € NRV(®~1(A4)).

Our next task is to solve equation for i = 2 in order to construct a larger
solution v, of via formula (3.17). It is easy to see that r; € NRV(a®™1(A,) —
a+ 1), limy_,. 72(t) = oo and that for any fixed ¢, > 0,

vi(t) =

Fl (S/ 01 (S)) dsl (326)

f— t f—
11ma ! h—(s)ds:(a—l)lim rzl(t) = a1 ,
t—oo 19(t) t, S t—o0 ti"z(t) ad-1 (/\2) —a+1
t
lim 21 f 1292 45~ 0 if z € Clty, o0) and lim =() = 0.
t—o0 rz(t) t S t—o0

Let &2 > 0 be small enough so that

2(a—1)
a® (Ay)) —a +

1 [Ka(@) + Lo(a@) + Ma(a)]ex <1,

and choose t; > 0 so large that w(t) < s%, t >t and

t —
a-1 f 12(s) ds < 2@-1) ,
) J, 2 ad () —a+1

t > tp. Define the set Q; C Cy[tp, o) and the integral operator 7, by 2, = {v €
Coltp, 00) : |o(t)| < e,t > 15}, and

a-1 trz(s)

(T20)(t) = - @ J, TFz(S, v(s)) ds,
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t > tp. It is a matter of easy calculation to verify that 77 is a contraction mapping
on ). Therefore there exists a unique fixed element v, € (), of 75, which satisfies
the integral equation

a-1 " r2(s)
_ =0 ), TF(S, v2(s)) ds,

va(t) =

t > tp, and hence differential equation (3.19) with i = 2. Then the function 1,
defined by with this v, is a nonoscillatory solution of on [tz, o). The fact
that 1, € NRV(®71(A,)) follows from the representation theorem. This finishes
the proof of the “if” part of the theorem for the case A # 0. If A = 0, then equation
has the two real roots A1y = 0, A, = 1. The solution y; € NRV(0) = NSV
of corresponding to A; has already been constructed in Theorem The
existence of the solution 1y, € NRV(1) corresponding to A, can be proved in
exactly the same manner as developed for the case A # 0. ]

3.2.3 RV solutions in the border case
Let us consider equation (3.2) for which the condition

00 _ a—1
lim ¢~ ft P(s>ds=§(“ 1) (3.27)

a

is satisfied. Such an equation can be regarded as a perturbation of the generalized
Euler equation

(@) + tZaCD(y) =0 (3.28)

withy =y = (“T'l)a Although is nonoscillatory, because it has a solution
y(t) = @~/ its perturbation may be oscillatory or nonoscillatory depending on
the asymptotic behavior of the perturbed term as t — oo, see Dosly, Rehak [28].
Our purpose here is to show the existence of a class of perturbations which preserve

the nonoscillation character of (3.28). The result can be seen as a generalization of
Theorem

Theorem 3.3. Suppose that (3.27) holds. Put

= [poas- L1

a
and suppose that
[0y o2

and
f ) df < co, where WV(t) = f Wsﬂ ds. (3.30)

t t
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Then equation is nonoscillatory and has a normalized regularly varying solution
with index (a — 1)/a of the form y(t) = t@=V/L(t) with L € NSV and lim;_,o L(t) =
t € (0,00).

Proof. The solution is sought in the form

f = a
y(t)=expﬁ®_l(w) ds, 7:(“‘1) , (3.31)

sa-1 a

for some T > 0 and v : [T, 00) — RR. The same argument as in the proof of the “if”
part of the previous theorem leads to the differential equation for v

(r(tyo) + & n L (OEt0) =0, (3.32)
where , o
o) = exp(fl ad ()/+1£(s))—a+1 ds
and
E(t,0) = [y + Y(t) + 0 — pO~L(7 + Y(t))v — 7F. (3.33)
Choose ty > 0 so that B
Y ()l < g, (3.34)

t > ty. Since
07 (7 + Y1) — a+ 1| = al(p + YO = 771 < am(a) Y ()],

t > to, for some constant m(a) > 0, we see in view of that ris a slowly varying
function and tends to a finite positive limit as t — oo. It follows that there exists
t1 > to such that

r(s)/r(t) <2 (3.35)

for s > t > t;. We rewrite the function F(t, v) defined by (3.33) as F(t,v) = G(t,v) +
z(t), where

G(t,v) = [y + Y(t) + 0ff — O~ (7 + Y(t))v — |y + Y(H)f

and z(t) = [P+ Y(#)IP—7F. Asitis easily seen, there exist positive constants K(a), L()
and M(a) such that
IG(t, v)] < K(a)v?, (3.36)

e
;; 2| < L@l (337)

and |h(t)] < M(a)[Y(t)| for t > t; and |[v] < /4. Let T > t; be large enough so that

4(p — 1)M(a)W(t) <

=2

(3.38)
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>,
16(ar — 1)*K(a)M(e) f d <1,

and

16(a — 1)*L(a)M(a) f B ? ds < 1. (3.39)
T

We want to solve the integral equation

3 1 [ r(s)
) = 0 ft TF(S,U(S))dS, (3.40)

t > T, which follows from (3.32)), subject to the condition lim; . v(f) = 0. Let
Cy|T, ) denote the set of all continuous functions v on [T, ) such that

o)

lv|lg = su <
o W)

Clearly, Cy[T, o) is a Banach space equipped with the norm |[v||y. Consider the
set ) C Cy[T, o) and the mapping 7 €2 — Cy[T, o) defined by

={v e Cy[T, ) : [v(t)] < 4(a - DM(a)V(t), t > T} (3.41)
and
To(t) = QP( v(s))ds = a-1 ™ @[G(s, v(s)) + z(s)] ds,

(f) r(t)
t > T. Using (3.35), (3.36) and (3.37), we see that

a-1 () ‘fm&&%gkﬂds:%a—1MﬂMWUL

D —|z(s)| ds <2(a-1)

t > T, and that

a-1 (71 K(@)[4(a - DMWN%H
| i v ds < 26 1{[

_ 3 2 ‘I’Z(s)
=32(a — 1)°’K(a)M* () I — d
< 32(a — 1)°K(a)M? ()W () f ¥ d

< 32(a — 1)3K(a)M2(a)W(t) f ) 45 < 230 - HM@W ),
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t > T. This shows that v € Q implies 7v € ), and hence 7~ maps Q into itself. If
u,v € Q, then using (3.37) we have
a—-1 7 r(s)
D ) s G(s, 0(s)) = G(s, u(s))l ds
“ 4(a-1)L W -
2s-1) [ Ao DLOMENVO - ut
t

[T o(t) — Tu(t)|

IA

IA

S

= 8(a— 1)2L(a)M(a) IOO \Pz(s)LZiLS()S)— u(s)| ds

< 8(a - DPL@M@POllo - ully ft 9,

t > T, from which, in view of (3.39), we conclude that 7" is a contraction mapping:
T v—T ully < |lv—ul|lw/2. Letv € Qbe a unique fixed element of 7. Then v satisfies
(3.40), and hence (3.32), on [T, ), and the function y defined by provides a
nonoscillatory solution of on [T, o). Since @~ 1(7 + Y(t) + v(t)) = (a — 1)/p as
t = 00,y € NRV((a —1)/a), and y is expressed as y(t) = t@=D/ar (), where

t -1 _ op-1
L(t):exp{flq) (7 + () + 0(s) - 7 ds},

S

t > T. Noting that [Y(t) + v(t)| < 7/2,t > T, by and (3.38), and applying the
Mean Value Theorem, we see with the use of that |1 (y+ Y (t) +o(t) - 7P71| <
N(@)(Y(®)| + [W()]), t = T, for some constant N(a) > 0. This, combined with the
hypotheses and (3.30), guarantees that L(t) tends to a finite positive limit as

t — oo. O

3.2.4 RSB solutions

In the next theorem we somehow relax the condition on the existence of the limit in
(3.11) and (3.14), and the existence of a RB solution follows; an important role in the
proof is played by Proposition[3.1} The result generalizes Theorem[2.5| But observe
that here we have guaranteed the existence of (at least) one RSB solution, while
in the linear case all eventually positive solutions are RB. As already indicated
above, the reason is that here we cannot use a reduction of order formula and the
fact that any solution is a linear combination of elements of the fundamental set.

Theorem 3.4. If

(o¢]

_ 1 a-1
_1 (a 1) < liminf -l f p(s)ds
t

a\ «a
o _ a—1
Slimsupt"‘_lft p(s)ds < %(aa 1)

t—o0

holds, then equation is nonoscillatory and has a normalized regularly bounded solu-
tion.
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Proof. If the assumption holds, then there exist positive constants fy and a satisfying
(3-5) such that [t*1P(t)| < a, t > to. Put h(t) = at'~®. Then it can be easily verified
that /1 satisfies |P(t)| < h(t) and (3.4). So, by Proposition[3.1} has a nonoscillatory
solution of the form

t
y(t) = exp { f D7 (v(s) + P(s)) ds}

to

TR
=em{l‘®1b %mw+P@nd%,

S

(3.42)

t > to, with v satisfying (3.8). Since
|07t (o(t) + a(t)]] < &P (t* (1) = ()P,

t > to, the solution yisanormalized RSB function by the representation theorem. O

3.3 More precise information about SV solutions

The observations in this section are based on the paper [99] by Kusano, Mari¢, Tani-
gawa. We will need the statement of Proposition with a slight modification,
namely that condition (3.4) is replaced by the more general one:

f WP(s)ds < L AP, t > to,
t 0(—1

where a(t) is a continuous nonincreasing function satisfying

1 -1 a—1
0<a(t)$a<—(a )
04 04

for some constant a. The proof of such modified proposition is almost the same as
that of the original one, and so it is omitted.

Theorem 3.5. Suppose that the hypotheses of Proposition [3.1|with the above modification
are satisfied. Let there exist a positive integer n such that

f A" EDHRF I dt <o if 1<a<2, (3.43)
f VORI dE <00 i a> 2. (3.44)

Then, for the solution of (.2), the following asymptotic formula holds for t — oo

t
y(t) ~ Bexp { f O v,-1(s) + P(s)] ds}, (3.45)
fo
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where B is a positive constant. Here the sequence {v,(t)} of successive approximations is

defined by

vo(t) =0, v,(t) =(a—1) foo [04-1(s) + P(s)Pds, n=1,2,.... (3.46)
t

Proof. Let y be the solution given by (3.6). Recall that the function v used in (3.6)
has been constructed as the fixed element in Cp,[ty, o0) of the contractive mapping
7 defined by (3.9). The standard proof of the contraction mapping principle
shows that the sequence {v,(t)} defined by converges to v(t) uniformly on
[to, o). To see how fast v,(t) approaches v(t) we proceed as follows. First, note that
[o,(H)] < (@ = Dh(t), t > to,n =1,2,.... By definition, we have

o1 ()] = (a = 1) foo IPE)F ds < (a—1) foo HP(s)ds < aP~ (B)h(t),
t t

and
o) —n() < (@—1) ft lor(s) + Ps)F — IPE)P|ds
< (@-1p f [ah(&)Plor (5)] ds
t

B p-1 B B A1 B

< aft a’~(s)hP(s)ds < afa (t)f; hP(s)ds
2(8-1)

< (8- DafPE () <8 (?) et

-1
for t > ty, where y, = % (“—'1)a . Assuming that

n(p-1)
[0u(t) = Oaca (O] < VK (?) h(#), (3.47)

a

t > to, for some n € IN, we compute

[op1(t) —vn(®)] < (@—1) ft IP(s) + 0a(s)F = [P(s) + -1 (5)IF| dIs
< (@-1p ft [ah(&) P o (s) — vor(5)] ds

) n(p-1)
= of f Y ?) 1P (s) ds
t a

n(-1) oo
aﬁyﬁ_l (@ f WP(s) ds
t

IA

Ya
n(p-1)
afyht (“y(—” (B — 1)aP~L()h(r)

_ -1 @)”(ﬁ_l)h .
Va ( e (®),

IA
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t > ty, which establishes the validity of (3.47) for all integers n € IN. Now we have
o(t) = v, a() + ) _[o(t) = 01 (D],
k=n

from which, due to (3.47), it follows that

k(g-1)
e (?) )

[o(t) = vp1(B)] <
n(p-1) oo k
< Y (‘?) Z(i) h(t) (3.48)
a k=0 o
n(p-1)
= ya(%) yayfah(t) = Ka"BD(Dh(t),

where K is a constant depending only on a and n. Using and (3.48), we obtain

+ -1
y(t) (exp { ft OP(s) + vp_1(5)] ds})

t
= exp { f (@7 [P(s) + 0(s)] = D [P(s) + 01 (5)]) ds} . (349)

to

Let 1 < a < 2. Then, by the Mean Value Theorem and (3.48),
@7PE®) +v(t)] - O [PE) + 0,1 ®)]] < (B = DIah®)F2lo(t) - v, (D)
Na"E-D(HnP~1(p), (3.50)

t > tg, where N is a constant depending on a and n. Let a > 2. Then, using (3.48)
and the inequality la* — b} < 2Ja - bt holding for A € (0,1) and a,b € R, we see that
@7 [P() +o()] = 7P + vua (] < 2l0() — v (P

< Ma"EV R,

t > to, where M is a constant depending on a and n. Combining (3.49) with (3.50)
or (3.51) according as 1 < a < 2 or & > 2, and using (3.43) or (3.44), we conclude

that the right-hand side of (3.49) tends to a constant B > 0 as t — oo, which implies
that y(t) has the desired asymptotic behavior (3.45). m|

IA

(3.51)

Corollary 3.1. Suppose that (3.11) holds and that the function a(t) = @(t), where @(t) is
defined by (3.12)), satisfies

g DE=1) (1)

f fdt<oo if 1<a<2, (3.52)
00 o (n+a=1)(f-1)?

f fdt<oo if a>2. (3.53)

Then the formula (3.45) holds for the slowly varying solution y(t) of (3.2).
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Proof. The conclusion follows from the previous theorem combined with the ob-
servation that in this case

DD (p) alrra=DE-17 p)

and a"EV(1HnF1(¢) = t

a"ED (Pt =

according to whether 1 < a <2 ora > 2. ]

3.4 More general case

It is a natural question whether a generalization of (some of) the results from
Section [3.2]to equation (3.1) is possible.

First idea which can come into mind is a transformation into equation of the
form (3.2). Unfortunately, in contrast to the linear case we do not have a (linear)
transformation of dependent variable y = hu at disposal. Thus it is impossible
to “kill” the coefficient r in general. Equation (3.1) can be transformed into an
equation of the form (3.2) with preserving unboundedness and the form of the
interval only when fa “r1-B(s)ds = . Indeed, we introduce new independent
variable by s = &(t) = fu t r17F(s)ds and new function x(s) = y(t). Then (B.I) is
transformed into

pE )

i -1 rec—1 i _
5 (e O0E e oo (5) + Fam e =0

where &1 is the inverse of &, or

d(Q(d)yFPQ*@»(M@:&

ds U \as™)) ™ i)

Jaro$, Kusano, and Tanigawa in [66] used a different approach, based on the
same idea as for the linear equation in Theorems 2.8 and 2.9} namely utilizing the
concept of generalized varying functions (see Definition[I.10) with the combination
of the approach described in Section[3.2l The two (logical) cases are distinguished:

f ) rP(s)ds = (3.54)

and

f ) r'=P(s) ds < oo. (3.55)

We denote R,(t) = fut r17B(s) ds in case (3.54) and R, (t) = ftm r1=P(s) ds in case (3.55).

Let A1 < A, denote the two real roots of the equation (3.13). A generalization
of Theorem and of Theorem reads as follows; at the same time it can be
viewed as a generalization of Theorem 2.8}(i).



Chapter 3 87

Theorem 3.6. Let (3.54) hold. Equation is nonoscillatory and has two solutions
y1, Y2 such that y;(t) € NRVg (@71(A), i = 1,2, if and only if

00 _ a—1
lim R7L(¢) ft p(s)ds=A € (—oo, i (“ - 1) ) (3.56)

Proof. Since the proof uses essentially the same ideas as the proof of Theorem
and of Theorem we mention only a few facts. Denote w(t) = RS7L(t) ftm p(s)ds—
A. The solutions y;, when A1 # 0, are sought in the form

A+ w(s) + v,'(s)) }
. _ 1
W”‘“p{LQ (1$m$%> N

i = 1,2. The function v; is chosen in such a way that w; = (A; + w(t) + v;)/R*"}
satisfies the generalized Riccati equation

w +p(t) + (a - 1) Pl = 0. (3.57)

To find the desired v;, the contraction mapping theorem is used.
In the case when A1 = 0 (i.e., A = 0), the solution y; is sought in the form

t (RN [T plr)d
yND:@@{l~®4{lx<ﬂﬁ p(v) T+wx@]®},

r(S)RG ()

where the differential equation for w; has the form

(w1)+m—N%WWFMﬂM+M®f:0
RS(s) PL(5)RA(s) ‘

O

The next result is a generalization of Theorem in case (3.54); at the same
time it generalizes Theorem [2.8}(ii). We assume

lim R (1) f " () ds = 1(
- t

[01

a— 1)0L—1

- (3.58)

Equation (3.1) with p satisfying this condition can be regarded as a perturbation
of the generalized Euler equation

(r(OP(y")) +

a—lf
(X v

’ _ 5 =
om0 7=

which is nonoscillatory. We show that (3.1) has a solution in NRVg, provided the
perturbation is small in some sense.
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Theorem 3.7. Suppose that (3.54) and (3.58)) hold. Put

() = R ft T pE)ds - % (& 1 )“‘1

1)
f AR =

W) _ (T IYe)
f TR S e W(t)‘ft ARG

Then equation is nonoscillatory and has a solution y € NRVg ((a — 1)/«a) of the
form y(t) = ROVUBL() with L € NSVg, and lim_eo L(t) = € € (0, o0).

and suppose that

and

Proof. Similarly as in the previous proof we omit details since it uses similar
arguments as the proof of Theorem Note just that we look for a solution of
(3.1) expressed in the form

L (7 +Y(s)+0(s)
y(t)zeXp{[ q)l( ORT(G) )ds}’

where v is desired to satisfy a certain Riccati type equation; the existence of v is
proved by means of the contraction mapping theorem. o

We now turn to the case where r in (3.1) satisfies (3.55). We give a half-
linear extension of Theorem (i), which is at the same time a counterpart of
Theorem 3.6

Let 01 < 02 denote the two real roots of the equation lolf + 0 + B = 0.

Theorem 3.8. Let (3.55) hold. Equation is nonoscillatory and has two solutions
y1, ya such that y,(t) € NRVy g (@7 (0y)), i = 1,2, if and only if

Jim Ral(t) ft " Re(s)p(s)ds = B (—oo, (“; 1)0()‘

Proof. The proof uses similar ideas as the proof of Theorem[3.7] Therefore we only
mention a few facts. The solutions y;, i = 1,2, when o # 0, are sought in the form

b [0+ w(s) + vi(s)
yi(t)ze)‘p{ﬁq)l( rORS() )ds}’

i=1,2, where w(t) = RL(t) ftw R%(s)p(s) ds — B. The function v; is chosen in such a

way that w; = (0; + w(t) + v;)/ R satisfies the generalized Riccati equation (3.57).
To find the desired v;, the contraction mapping theorem is used again. The case
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when 02 = 0 (i.e., B = 0) is examined separately; the differential equation for w, to
be solved has the form

Lt S —[I (1) + walB + Bw(t)] =
2T OR T ORI i

O

The counterpart of Theorem [3.7| which is at the same time a generalization of
Theorem[2.9}(ii) reads as follows. Equation (3.1) can be seen again as a perturbation
of certain Euler type equation, this time of the form

_r
rF1(HRA()

Theorem 3.9. Let (3.55) hold. Assume that

o Ra1<t) ft " RAE)p(s) ds = ( aT—l ) |
Ral(t) ftm R%(s)p(s) ds — (a ; 1 )a

> 1y
f AR

YO 4w N (O]
f rﬁ‘l(t)f{a(t) dt < oo, where W(t)_I IR

Then equation (3.1) is nonoscillatory and has a solution y € NRVy g (—(a—1)/a) of the
form y(t) = R\~ 1>/“(t)L(t) with L € NSV, p_and lim_e L(t) = € € (0, o).

(r()D(y')) + D(y) =0

Put
Y(t) =

and suppose that

and

Proof. We omit details again. Note only that we seek a solution of (3.1) expressed

in the form t 6) ©
_ -1 s)—y+ous
s =ew {[ o ORI ).

where v is desired to satisfy a certain Riccati type equation; the existence of v is
proved by means of the contraction mapping theorem. |

3.5 Asymptotic formulas for nonoscillatory solutions of
conditionally oscillatory half-linear equations

In this section which is based on the paper [137] by Patikovd we investigate
asymptotic properties of nonoscillatory solutions of a special conditionally oscilla-
tory half-linear second order differential equation, which was constructed in [29]
as a perturbation of equation (3.1).
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Throughout this section we suppose that (3.1) is nonoscillatory. Let d(t) be a
positive continuous function, we say that the equation

(r(OD))" + [p(t) + pd(t)]P(x) = 0 (3.59)

is conditionally oscillatory if there exists a constant 1o > 0 such that is oscil-
latory for p > pp and nonoscillatory for p < pg. Let h(t) be a positive solution
of nonoscillatory equation (3.1) such that #’(t) # 0 on some interval of the form
[Ty, o0) and denote

R() := r(HDPOI (DI*72,  G@t) == rOh(BDH (1)) (3.60)

Under the assumptions

< dt .
f M = 09, 11¥r_1)(1xr)1f|G(t)| >0,

the authors of [29] constructed a conditionally oscillatory equation seen as a per-
turbation of (3.1)) in the form

u
" 2
e (HR(H) ( ['R1() ds)

(r(HD") + |pt) + d(x) = 0. (3.61)

The critical oscillation constant of this equation is po = ﬁ, where f is the conjugate

number to a. In [29] it is also shown that (3.61) has for this constant u = g a
solution with the asymptotic formula

t i t -1
x(t):h(t)( f R—l(s)ds) 1+o[( f R—l(s)ds) ]] as t— oo. (3.62)

The aim of this section is to present more precise asymptotic formulas in terms
of slowly and regularly varying functions in the case where the constant u is less
than or equal to ﬁ

The “perturbation approach”, when the considered equation is regarded as a
perturbation of another half-linear equation, has been also used in [135]. There,
the asymptotics of nonoscillatory solutions of

@) + L2 0() + pEOE) =0, (3.63)
where y, = ("‘T_l)a, was established under the assumption

00 _ a—1
tlgg logtft p(s)s* 1 ds € (—oo, % (a - 1) ] .
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Equation (3.63) has been seen as a perturbation of the half-linear Euler type equa-
tion
(D)) + %cp(x) -0 (3.64)

with the critical constant y,.

It is well-known (see, e.g., [28]]), that similarly as in the linear oscillation theory,
the nonoscillation of equation is equivalent to the solvability of a Riccati
type equation. In particular, if x is an eventually positive or negative solution
of the nonoscillatory equation on some interval of the form [T, ), then

w(t) = r(t)d (’%) solves the Riccati type equation
w +p(t) + (a — Dr P #)wlf = 0. (3.65)

Conversely, having a solution w(t) of (3.65) for t € [Ty, o), the corresponding
solution of can be expressed as

t
x(t) = Cexp {f =B (s)d~(w) ds} ,

where @1 is the inverse function of ® and C is a constant.

Using the concept of perturbations it appears useful to deal with the so called
modified (or generalized) Riccati equation. Let /1 be a positive solution of and
wp(t) = r(t)® (%) be the corresponding solution of the Riccati equation (3.65). Let
us consider another nonoscillatory equation

(rHDE)) + P(HD(x) = 0 (3.66)

and let w(t) be a solution of the Riccati equation associated with (3.66). Then
v(t) = (w(t) — wy(t))h*(t) solves the modified Riccati equation

v’ + (P(t) - p(t))h® + art P P(@ (wy,), w) = 0, (3.67)
where ;
DP(u,v) := [l —uv + lol? >0,
a p

with the equality P(u,v) = 0 if and only if v = ®(u). We deal with this equation in
a slightly different, but still equivalent, form

o+ (P(E) — pOHE + (@ — 1) PP |G|5F(%) _ 0, (3.68)
where G(t) is defined by (3.60) and
Fu) = |u+1/f - pu—1. (3.69)

Next we apply the perturbation principle combined with the (modified) Riccati
technique to get asymptotical results for (3.61) with p < % and p = ﬁ
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Theorem 3.10. Suppose that is nonoscillatory and possesses a positive solution h(t)
such that I’ (t) # 0 for large t and let

< dt
f % = OO, (3.70)
and
li¥n inf|G(t)| > 0. (3.71)

Ifu< ﬁ, then the conditionally oscillatory equation (3.61) has a pair of solutions given
by the asymptotic formula

¢ B-DA;
x; = h(t) ( f R7Y(s) ds) Li(b),

where A; are zeros of the quadratic equation

22\2 ~A+u=0 (3.72)

and L;(t) are generalized normalized slowly varying functions of the form

' &i(s)
Lit) = ‘ d
(1) = exp {f R(s) f R-Y(1)dr S}

and ¢i(t) — 0 for t — oo.

Proof. We are looking for solutions of the modified Riccati equation associated
with (3.61)), which reads as

o' () + ¢ s+ (- 1)r1—ﬁ(t)h—ﬁ(t)|c(t)|ﬁP(@)

R(t) ( ['R1() ds) Y

0, (3.73)

where G is defined by (3.60) and F by (3.69).
Assumptions (3.70) and (3.71) imply the convergence of the integral

" B (pyp pp( 20
f A <t>|G<t>|P(G(t))dt,

from which it follows (see [29]) that v(tf) — 0 and %)) — 0ast — oo.

Let Co[T, o) be the set of all continuous functions on the interval [T, o) (T will
be specified later) which converge to zero a t — oo and let us consider a set of
functions

V={we CT, ) :|w}) <et=T},
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where ¢ > 0 is so small that

1 1
——@+1)e< 2. 3.74
=+ De<; (374)
Let us also observe that the inequality
1 (ﬂ + 1)s <1 (3.75)
V1-2qu\2

is implied. Denote the roots of the quadratic equation (3.72) for u < 2177 as

1- 1-2pu Ll ,/1—253

S

We assume that two solutions of the modified Riccati equation (3.73) are in the
form

fort € [T,) and z € V, i = 1,2. Substituting this function and its derivative into
(3.73), we have

p—Ai —z(t)
R(t) ft R-1(s)ds

Z'(t) +

_ _ Ul‘(Z, t) ' - _
+ (a - D Pk ﬁ(t)IG(t)IﬁF( G0 )f R7Y(s)ds=0

which can be rewritten as
(=1 + Aip)z(t) N 1

(¢ Ei(z,t) =0, 3.76
=0 R(®) ['R-Y(s)ds  R(t) ['R-1(s)ds &0 (376
where
t 2 ,
Ei(z, t) := p — A = Aifz(t) + (@ = 1) ( f R7Y(s) ds) Gz(t)F(%).

This means that looking for solutions v; of the modified Riccati equation (3.73) is
equivalent to looking for solutions z; of the equation (3.76). In the next we shall
show that two solutions of can be found through the Banach fixed-point
theorem used onto suitable integral operators.

First, let us turn our attention to the behavior of the function F(u), which
plays an important role in estimating of certain useful expressions. Studying the
behavior of F(u) and F’(u) for u in a neighborhood of 0, we have

F”(O) F’//(C)
> u? + c ul
BB —-1) BB —-1(B—-2)
7w 6

F(u) =

11+ 2 sgn(1 + Qu’,
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where ( is between 0 and u. For |u| < % and hence also || < % there exists a positive
constant M, such that

ﬁ('B6_ 2)|1 +fPsgn(1+ Q| <Mz for B>1.
Therefore ( )
‘F( ) — PE-1) 5 < (B - D)Mglul. (3.77)
Similarly,
F'(u) = F”O)u + d //;C’)Lﬂ

11+ P8 sgn(l + )u?,

- gy BEDE=D

where (' is between 0 and u. Again, considering |C’| < % we have
|F"(u) - B(B — 1)u| < 3(8 — 1)Mglul. (3.78)

Now, let us denote [(t) := f t R~1(s) ds, then the estimate of the function E;(z, t)
for z € V, reads as

p

|Ei(z,t)] = ‘y Ai = Aipz(t) +

]Z(t) 2(z )+ (a — 1)]2(15)(;2(1‘)1:(01(2 t))

Gl
< Ju= A= i) + 5y + =00
vz )\ BE-1) (viz )\
Gt | 2 G(t)
Mglhi+2®P B, KMgldi +2(hP
comer = 2P e

where (3.77) was used for u = Z and K := sup, >T G(t)l is a finite constant for T
sufficiently large because of (3.71] - According to (3.70) there exists Ty such that the
last term in the previous inequality is less than &2 and therefore

P o
- E] (t)vj

+|(a - DA(HG*() lF(

B \p
< §|Z(t)| +

IEi(z, ) < & i< (g+1) (3.79)
for t > Ty. Furthermore, for z1,z, € V we have

|Ei(z1,t) — Ei(z2, )l = |—Aif(z1 — 22)

vi(z1, 1) vi(z2, 1)
+ (p - DIA(HG(t) [F( GO ) - F( 0 )] ,
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which, by the mean value theorem with a suitable z(t) € V, becomes

‘ = Aiq(z1 — z2) + BJ(Hvi(z, t)(z1 — 22)

J(t)

@ JOCOF (220 21 - 2 - Bl D - 22
< ‘ = Aip + BJ(t)vi(z, t)

@100 (F (%) - s - ) s -zl
< (ﬁIZ(t)I . ‘3KM"(AZ' O ) et - 2l

where (3.78) was used. Similarly as in the previous estimate, there exists T, such
that the middle term in the last row of the inequality is less than ¢ and hence

|Ei(z1,t) — Ei(z2, )| < e(B+ 1) - |lz1 — 22| (3.80)

for t € [Ty, 00).
Now, let us consider the pair of functions

t -1+ /\iﬁ .
i = 3 d , L= 1, 2.
rilt) = exp {f R(@) [*R1()dr S} l

Then equation (3.76)) is equivalent to

1
) ['R-1(s)ds

ri(Hz()) + ri(t) Ei(z,t) = 0. (3.81)
R

For i = 1, we have the function
t -1+ Alﬁ t - m
= ds} = d
n(h)=exp {f R@s) [*R-(7)dr S} P {f R(s) [*R-(7)dr S}

and it is easy to see that r{(t) — 0 for t — oo.
Finally, let us define the integral operator F; on the set of functions V by

1 0 r1(s)
= ds.
(F120 71(t)ft R(s) fSR_l(T)dTEl(Z’S) ’

We observe that

foo r1(s) ds = r1(t)
t R(s) fs R~Y(t)dt V11— Zﬁp‘
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Taking T = max{T, T2}, by (3.79) and (3.74) we have

1 0 r1(s)
,s)|d
I(F1z)(®)] < Vl(f)ft R(s)st‘l(T)dT”El(Z s)lds

—1 (ﬁ + 1) <e¢
VI=2Bu '

which means that F; maps the set V into itself, and by (3.80) and (3.75) we see that

|(F1z1)(t) = (F1z2)(B)] < t)f R(s)fﬁlisl(f)dT

I 1(21/ S) - El(ZZI S)' ds

1 1
<llz1 - zll——=—=—=¢(f + 1) < Sllz1 - 22,

VI=2pu

which implies that F; is a contraction. Using the Banach fixed-point theorem we
can find a function z;(t), that satisfies z; = F1z7. That means that z;(¢) is a solution

of and also of and v (t) = }};—i(;)s is a solution of (3.73). Fori = 2 we
have
ra(t) = exp {ft _15 +Aop } { M ds}
R(s) [ R™Y()dt R@s) [TR-Y(7)dx
and we define an integral operator F, by

1 t 2(8)
= - ds.
(F22)(8) Vz(f)f R(s) fs R1(7) dTEZ(Z’ 5)ds

Since

ft 72(s) ds = ra(t) —c
R@s) [FR1(r)d7 NI

where c is a positive suitable constant, the inequality

[ R

nt)J Re) TR dr T2

holds for t sufficiently large, as r2(f) — oo for t — oco. Taking T = max{Ty, T2}, the
estimates for the operator F, are the same as in the previous case and we can find

a fixed point z;(t) satisfying Foz, = z. Thus zo(t) solves (3.81) and vo(t) = }f;—zi(dt)
—tdas

solves the modified Riccati equation (3.73).
Expressing the solutions of the “standard” Riccati equation for (3.61)) corre-
sponding to the solutions v;(z;, t) of the modified Riccati equation, we have

UZ‘(Zi, t) )
he (t)wn(t)

w0 |1+ Ai + Zift) — (0|1 + Ai t+ zi(t) .
ha(t)wh(t)f R-1ds G(t)f R-1(s)ds

w;(t)

W= (t)vi(zi, t) + wy(t) = wy(t) (1 +
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Since solutions of (3.61) are given by the formula

t
x(t) = exp {f =B s)dH(w) ds},

we need to express

p-1
_ _ n(t) Ai +zi(t)
By (w;) = 1
e o | G(t) ['R-1(s) ds]

W (t) Ai +zi(t) Ai + zi(t)
- 1+(-1
o |6 )G(t) ['R-1(s) ds ’ O[G(t) [ R1(s) dsJ]
KO, (B-DA
M R [R1(s)ds
G-v=) [ Az )
R®) ['RYs)ds  |\R(®) [ R-(s)ds

Because

R(®) ['R-1(s)ds

0( A+ z(0)

R(t) ['R7Y(s)ds 0 (—Af”f“) )
R(®) [*R1(s) ds] )

R(t) ['R-1(s)ds
_o(A; +zi(h)
R ['R(s)ds
holds for large t, the pair of solutions of fori =1,2is in the form

t (B-DA;
xi(t) = exp {lnh(t) + ln( f R7Y(s) ds)

L (B — 1)zi(s) + o(A; + zi(s))
R@) [T RY(7)d7 '

As z; € V and hence z;(t) — 0 for t — oo, the statement of the theorem holds for
&i(t) = (B — Dzi(t) + o(A; + zi()). O

Now let us present the asymptotic formula in case y = 21—[3, which gives an
improved version of (3.62).

Theorem 3.11. Let the assumptions of the previous theorem be satisfied and let u = 21—q.
Then equation (3.61)) has a solution of the form

: ;
x(t) = h(t) ( f R—l(s)ds) L(b), (3.82)
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where L(t) is a generalized normalized slowly varying function of the form

g &(s)
L(t) = d
0 eXp{f R@s) [T R7Y(7)dr S}

and e(t) — 0 for t — oo.

Proof. For u = ﬁ the quadratic equation (3.72) has the double root A = [lg We
assume the solution of modified Riccati equation to be in the form (for z € V)
llf +z(t)
o(z,t) = —
f R-1(s)ds

which gives, after substituting into the modified Riccati equation (3.73) for u = ﬁ,

—2(t) - 3
R(®) [*R(s)ds

Z/(t) + + (= )Pt ﬁ(t)|G(t)|ﬁP( o ))ftR‘l(s)ds =0
G(t) -

Let us denote

t 2
B b = —Z(f)—%ﬂa 1)( f R‘l(s)ds) Gz(t)l—"(v((;z(’t;))

and let us consider an integral operator F3

© 1
F = E(z,9)d
(F3z)(t) jt‘ G fs o dr (z,5)ds

on a set of continuous functions
V={weCT, ) :|w}) <et=T},

where T and ¢ are to be established similarly as in the proof of the previous
theorem. Then the solution of modified Riccati equation and also the solution of
the studied equation can be found in almost the same manner as for the previous
statement. |

Remark3.1. If r(t) = 1, p(t) = yot~* and h(t) = +% then the conditionally oscillatory
equation (3.61) with p = ﬁ, seen as a perturbation of the Euler equation (3.64),
becomes the Euler-Weber (or alternatively Riemann-Weber) half-linear differential
equation

Ua
toIn® t

(@) + |f— ]@( )=

-1
with the so-called critical coefficient u, = ;(0‘—_1)06 . The asymptotic formula

(3.82) then reduces to the formula given in [135, Theorem 2].
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Remark 3.2. For the Euler-Weber half-linear equation also the asymptotic formula
for its second linearly independent solution is known (see [136]). An open question
remains whether the second linearly independent solution of with p = ﬁ
could be found in a similar form

¢ i t :
xz(t):h(t)( f R-l(s)ds) (m( f R-l(s)ds)) La(#),

t
Lo(h) = &(s) d
20 eXp{f R(s) [*RY(r)dtIn([° RY(7)dr) i

and &(f) > 0ast — oo,

where

3.6 De Haan type solutions

3.6.1 Solutions in the class I

We consider the equations

(rP(Y)) = pt)D(y), (3.83)

and
(@) = pt)®(y), (3.84)

where 1, p are positive continuous functions on [a, o). In this subsection we deal
with solutions of which are shown to be in the class I', but RV solutions are
also examined. The results are taken from [147] by Rehak. Later we briefly discuss
possible extensions (based on Rehak, Taddei [150]).

Because of the sign condition on p, equation (3.83) is nonoscillatory by the
Sturm type comparison theorem; it suffices to compare with (r(t)@(y’))" = 0.
For a (nonoscillatory) solution y of it holds, y(t)y’(t) > 0 or y(t)y'(t) < O
eventually. Without loss of generality we may work just with positive solutions.
Denote

M* = {y : yis a solution of (3.83), y(t) > 0,y'(t) > 0 for large t}.

Under our sign condition, the class M* is nonempty. Moreover,

{ Y(ao,a1) € (0,0) X (0, ) Yty sufficiently (3.85)

large dy € M™ : y(ty) = ao, y' (to) = a1.

Further, denote M3 = {y € M* : limiLey(t) < oo} and MY, = {y € M* :
lim;—,e0 y(f) = oo}. Clearly, M* = Mz U M{,. Set

00 t ﬁ_l 00
J = f rl—ﬂ(t)( f p(s)ds) dt and J, = f r'=B(s) ds.
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There hold ] < 00 = ], < coand M}, # 0 & ] < co. Hence,
Jr =00 = (0 #)M*" = ML, (3.86)

In the special case of equation (3.84), that is () = 1, the discussed classes will be
denoted as M*(1) and IMZ(1). For basic properties (classification and existence)
of nonoscillatory solutions see e.g. [28, Section 4.1].

1
Theorem 3.12. pr_% € BSV, then ) +# M*(1) = M¥(1) C r((ﬂfr%l)“),

Proof. In the first part of the proof, we assume that p € C'. From the assumption
of the theorem, in view of properties of B8V functions, we have (p‘%)’(t) =
—-p (t)/(apﬂ(t)) — 0ast — co. We know that M*(1) # 0. Take y € M*(1).
Then y € MZ,(1). Alternatively we can start with y(f) — oo, and then we find
ye M*(1) = ML (1). If wesetw = fOU) \vhere f is C! nonzero function, then w

Oy)
satisfies the generalized Riccati equation
, f®) -
w' — f; o © fOrO+@-1) POl =0

for large t, see [28, Section 2.2.2]. Put f = p_llf. Then w > 0 and the Riccati like
equation becomes

w/

pr(t)

a+l

=1-(a— 1)w[ P + wﬁ-l) (3.87)
ap « (t)

for large t. We want to prove that limy_,. w(t) = (a - 1)_113. We distinguish three
cases according to the eventual sign of w’. First, let w’(t) > 0 for large t. Then

lim; 0 w(t) = A € (0, oo) U {oo}. If A = o0, then from (3.87) and p’(t)/(paa_tl(t)) -0,
we have lim;_, w’(t)p"(t) = —o0, a contradiction w1th w'(t) > 0. Let A € (0, 00).
Then from (3.87) and p’(t)/(p a ( )) — 0, we have lim;_,o, w (t)p“(t) =1-(a—-1)AP.
A #(a—1)F, thenw (t) ~ (1 — (& — 1)AP)p (£) as t — oo, hence

t

t
my ft pi(s)ds < w(t) - wlte) < My f pi(s) ds, (3.88)

to

t > to, to being large, for some 0 < m; < My < co. From w = p_f%(y'/y)‘)“1 we have
_ 1, . _ 1 (t
wb=1 = p~ay’ [y. Since wP1(t) < M, t > to, for some M € (0, ), we get pa (t) > yy(t)]\),l,

t > tg. Hence,
t
1 "Y6) ©) 4 y(t)
a(s)ds > ln
WO vo M Y

t > tp, which implies fts;ﬁ(s) ds — oo ast — co. In view of (3.88), we obtain

1
lim;,e w(t) = o0, a contradiction with A < co. Thus, lim;e w(t) = (@ — 1) F. If
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w’(t) < 0 for large t, then we use similar arguments; in particular, we distinguish
the cases when lim;_,. w(t) = 0 and lim;—,. w(t) > 0, and reach a contradiction in
undesirable cases. Finally we assume w’(t,) = 0 for a sequence {t,} with t, — oo
as n — oo. We take here zeroes of w’ being consecutive; the finite cluster point
cannot exist. From (3.87), we have

"(ty) _an
L= PO g, (3.89)

B(t.) —
wP(t

(t) - -
Hence, w(t) hits the positive real root of the equation

1 p’(tn) _atl
IB —_— = — [
Al a—1 o p (tn)A

at each t = t,. The positive root indeed exists; it is sufficient to realize that the
left hand side of the equation represents a parabola like curve symmetric w.r.t.
the vertical axis, and with the negative minimum, while the right hand side is a
line which goes through the origin. The function w is monotone between zeroes
of w’, thus w(t,) < w(t) < w(t,+1) or w(t,+1) < w(t) < w(ty), ty <t < tyy1. Thanks
a+ —1
to p’(t)/(pTl(t)) — 0ast — oo, from (3.89) we get lim;, oo w(t;) = (@ — 1) 7, and
1 1
50 lim;_,e w(t) = (@ — 1)"#. Thus altogether we have lim;,. p” () (y' (£)/y(£))* "' =

(a - l)_%, which implies
y(t))“ (a—l) g1
~ =—— ast— oo 3.90
) (5 0 420
Further, because of the identity (D(y’))’ = (a — 1)y”|y’|*"2, from we get

vy Yy @@y _ p2yy _p ( v )“_

y2 o ye (@-Dy* (a-y* a-1\y

I

(3.91)

From (3.90) and (3.91), we obtain

y' By _ p®) (y(t) )“ _PB a-1
v a-1\y®) a-1 p@)

1
as t — oo. Hence, y € T'(h), where h = y/y’. From (3.90), h(t) ~ (‘;(—_t})“ ast — oo,

1
thus y € T(("‘Tl) )

Now we drop the assumption of differentiability of p. Since p‘i € BSYV, there
exists p € C! such that p(t) ~ p(t) and (p‘%)’(t) — 0 ast — oo. Forevery ¢ € (0,1)
there exists a (large) ¢y such that (1 — ¢)p(t) < p(t) < (1 + €)p(t), t > to. Consider the
two auxiliary equations (P(u))" = (1 + €)p(t)@(u) resp. (P(v'))" = (1 — &)p(t)P(v).
Take their solutions u resp. v which are in the relevant M (1) type classes, and
satisfy u(tp) = up > 0, u’(tp) = ug > 0 resp. v(tp) = vo > 0, v'(tp) = v1 > 0, with
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up, U1, v, v1 being determined more precisely later. Such solutions indeed exist by
and (3.86). Set w, = @(u’/u), resp. w, = (v’ /v), resp. wy, = D(y’/y). These
(eventually positive) functions then satisfy the generalized Riccati equations w;, =
(1+e)p(t)—(a=1)[wylP, resp. w), = (1-e)p(t)—(a=D)lw,|P, resp. w}, = p(H)—(a=1)lw, I,
t > to. Because of arbitrariness of vy, v1 (see (3.85)) we may take v in the M (1) type
class in such a way that wy(ty) < wy(tp). From the standard result on differential
inequalities ([53} Chapter III, Section 4]), we have w,(t) < w,(t), t > tp. Hence,

, a-1 1 ’ a-1 X
(Z;:tt))) PO s (yy((;)) PO,

t > tp. Asin the first part of the proof, we get

which yields, in view of p(t) ~ p(t),

v'(t) ol 1—e\F
(aﬁ) o~ (75)

as t — oco. Thus we get

N T
h{gionf(y(t)) p /(t)Z(a_ ) .

Analogously, examining w,, we get
a-1 1
) Y () _1 ( 1+¢ )E
1 B(t) < .
“ii?p(ya)) A ey

Since ¢ € (0,1) was arbitrary, we obtain

_1 _1
lim (' (5/y(0)*'p 7 () = (@ =177 .
The rest of the proof is the same as in the previous part. O

Results in the spirit of Theorem for linear equation are presented in Sub-
section Recall that T' ¢ RPV(e0). Thus we should mention also Theorem

where the condition u

t p(s)ds — oo
t
as t — oo is proved to be necessary and sufficient for decreasing and increasing
solutions of (2.2) to be rapidly varying; the proof is presented just for decreasing
solutions. Concerning an extension of this result to half-linear equation (3.84),
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the author has not found any paper on this topic, except of [121], where the dis-
crete counterpart is considered and only decreasing solutions are examined. As for
differential equations, there is only a mention made by prof. Kusano at CDDE con-
ference (Brno, 2000) about an allegedly existing statement which extends Mari¢’s
theorem for the case of decreasing solutions to (3.84), with emphasizing that the
case of increasing solutions of is an open problem (both, the existence of an
RPYV increasing solution as well as the fact that all increasing solutions are RPYV).
Theorem 3.12} in fact, offers a condition guaranteeing that any eventually positive
increasing solution (which indeed exists) is rapidly varying and, moreover, its
asymptotic behavior is more specified. Observe that this sufficient condition, for

a differentiable p having the form (p‘i)’(t) — 0 ast — oo, implies the one of Mari¢
type modified for (3.84), namely

At
t“‘lf p(s)ds — oo.
t

Theorem can be seen also as an extension of the classical result by Hartman-
Wintner [54, Paragraph 24]. Finally, consider the special case when p(t) — C €
(0, 00) as t — co. Then, from the proof of Theorem3.12|we see that y € M* satisfies
lim 0 ¥/ (1) /y(t) = (@ = 1)/ C)‘%. Thus, from this point of view, the solution y can
be understood as of Poincaré-Perron type. Such a behavior, along with numerous
refinements, is studied quite extensively for linear equations or systems also in
the present; as one of the pioneering works can be regarded the classical paper
[140]. So as a by-product of our results, we offer — to some extent — a half-linear
extension of this result in the second order case.

Now we somehow modify the above ideas which will lead to regularly varying
behavior. Let p be differentiable. In the previous considerations we assumed that

a+l

limt—)oo(p_% ) () = 0. Now assume that the limitis nonzero, i.e., lim; oo p'(t)/p~ « =
C # 0. Denote by ¢ the positive root of

c _
ag a-—1

lolf +

It is easy to see that the root indeed exists and ¢ # (a — 1)_%. Take y € M*(1).
Similar arguments as in the first part of the proof of Theorem yield

-1
v (1) )“ 1 R
J 7 B(t) ~
as t — oco. Using this relation along with (3.91), we get

yoyn 1
T T @ong

We (naturally) assume that C < 0. Then ¢ > (@ — 1), and so

lim M =o0<1,
t—00 y’z(t)



104 Section 3.6

where 0 = 1/((a — 1)¢f). Hence, y € RV(1/(1 - 0)), or y € RV(-ap?~!/C). Thanks
to convexity of solutions to (2.I), we get normalized regular variation. Thus we
have proved the following theorem.

Theorem 3.13. Let p be differentiable and lim;_,., p’(t) /p‘aTH(t) =C <0. Then
0 # M*(1) = ML(1) €S NRV(-ap1/0),
where ( is the positive root of

C 1
Ft=p-— =
o TRl a1 0.

From the results of Section [3.2]it follows that possesses solutions y; with
yi € RV(@®1(A))), i = 1,2, where A1 < 0 < A, are the roots of AP =1 —A =0
if and only if lim;_c a1 ftoo p(s)ds = A(< 0). Observe that p’(t)p‘aai(t) ~ C(< 0)
implies 7! ftw p(s)ds ~ (—a/C)*/(a — 1) as t — oo. Further, it is easy to see that
Ay = (—a/C)* 1y, and so — as expected — the indices of regular variation of
increasing solutions in both the results coincide. Note that the integral condition
from Section[3.2)is more general than the condition in the previous theorem. On the
other hand, the fixed point approach used in Section [3.2| guarantees the existence
of at least one positive increasing RV solution, while the result in this section says
that all positive increasing solutions are regularly varying.

Now we show a connection with generalized regular variation. First observe,
that if a positive function f € C! satisfies T(t)f'(t)/f(t) ~ 9 € Ras t — oo,
where 7 is positive continuous with fu o0(1/’[(5)) ds = oo, then f € NRV,(9),

where w(t) = exp { fa t 1/7(s) ds}. This fact easily follows from the representation

theorem. Assume now p‘% € B8V, and take y € M*(1). From the proof of

Theorem we have y'(t)/y(t) ~ (p(t)/(a — 1))% ast — oo. Set t(t) = p‘%(t).
Then Iny(t) ~ N ft;(l/”[(s)) ds as t — oo, for some N € (0,0), which implies

ftso(l/r(s)) ds = c0. If wesetd = (a — 1)_}7, then vy satisfies t(t)y’(t)/y(t) ~ 9 as
t — oo and now it is easy to see that

¢
y € NRYV,, ((a - 1)_5), where w(t) = exp {f p%(s) ds}.

The statement of Theorem can therefore be reformulated in terms of general-
ized RV functions. In particular, we get

M*(1) € NRV, (@ - 1)7%)

with the above defined w.

Consider now more general equation (3.83)), where the coefficient r satisfies
fa “r1B(s)ds = oo. Set R(f) = fa ' r17F(s) ds and denote by R7! its inversion. Let us
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introduce new independent variable s = £(t) and new function u(s) = y(£7(s)) =
y(t), where & € Cl, &) > 0,&(t) >0, t € [a,0), and &(t) — o0 as t — oo. Then
% = 5'(5‘1(5))%, and (3.83) is transformed into

d d -1
Sler e e one(§) - LS owm. (392)
Set &(t) = R(t). Then & (£71(s)) = r'P(R71(s)) and becomes
d du -
" (qn (5)) = (s)D(u), (3.93)

where fi(s) = rlp_ (ﬁlz;(f ()S))). Take a solution y of (3.83) such that y € M*. Then y € MY,

and — after the transformation — the corresponding solution u of (3.93) satisfies

u(s) — oo as s — oo with %u(s) > 0 eventually. If we now assume 75_% € BSYV,
then as in the proof of Theorem [4.14 we get

fue) ( ps) )

u(s) a-1
as s — oo. Since % = rﬁ‘l(t)%, the last asymptotic relation yields
1
ey @ (P Opm)
y(t) a-1

as t — oo, which yields y'(t)/y(t) ~ 1/Q(t) as t — oo, where Q(t) = [p(t)/((a —
1)r(t))]‘§. Take € > 0 and tg such that

1-¢ y(#) 1+¢
< < ,
Q) — y® — Q@)
t > tp. Assume Q € BSYV. Then Q € SN, because of continuity. Let A > 0 and take

the integral between t and ¢ + AQ(t), for which by the local uniform convergence
the following relation holds,

t+AQ(f) 1 A Q(t)
——dv= ———dz—>
L gewr ), aresam e
as t — oco. Thus we get
y(t + AQ(#)) (t +AQ(t))

. Yy
< limsupln
y(® A0
Letting ¢ — 0 we come to y € I'(Q). The above considerations are made under
the assumptions p € 8BSV and Q € BSV. If we assume p, r differentiable, then —
after some rearrangement in the former equality — we get

(I -e)A <liminfln <A+ o)A
t

a+l

d__1, | IT(r\e pr—pr r%r’o_
A “(S)‘(_E(E) r—2+(1—ﬁ)(5) 7] R7(s)
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and

(@-17+ Q) = [—i(;) CEEE J<t>.

Thus we see that in the case of differentiable coefficients it is sufficient to require
the expressions on the right-hand sides to tend to zero as s resp. t tends to infinity.
So we have obtained the following result, which extends Theorem

Theorem 3.14. Let fa “ 11-B(s) ds = oo. Denote R(t) = fa " 11=B(s) ds. Then any of the two
sets of conditions

(i) (&) " oR e BSV, (1) " e 8BSV,

or

1y -1,
(ii) p,r are differentiable, ((’;) “) (t) = 0and ((g) * L) (t) > 0ast— o0

7

guarantees

0% M = M. C r[((a;l)r);}

A closer examination of the above observations reveals that the part of the
proof of Theorem[3.12)starting with can alternatively be shown via a different
method, namely the one which was used to obtain Theorem

The asymptotic conditions in the second part of Theorem can be relaxed

ol 0 0ma) -0 2 0mi

The results of this subsection were further extended in [150] by Rehak and
Taddei. Equation (3.83) is examined there directly (i.e., not via a transformation)
no matter which of the conditions f © 1B (s)ds = o0 and f ©1-p (s)ds < co hap-
pens. Moreover, not only increasing solutions but also decreasing solutions are
considered.

3.6.2 Solutions in the class I1

In the paper [150] by Rehak and Taddei, half-linear extensions of the Geluk type
results (see e.g. Theorem were obtained. The paper is in preparation. We
give — for illustration — only one statement without proof. By M~ we mean the
set of all eventually positive solutions of (3.83).

Theorem 3.15. Let p € RV(6) and r € RV(6 + a) with 6 < =1. If Ly(t)/L.(t) — 0 as
t — oo, where Ly and L, are SV components of p and r, respectively, then M~ C NSV.
If y € M~, then —y € I1(—ty’(t)). Moreover,
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(i) Iffam (%)ﬁ ds = oo, then

B Hospls) |
y(t) = exp {—fa‘ (m) (1 + 0(1)) dS}

and y(t) = 0ast — co.

@ If [~ (%)Ll ds < oo, then

_ = spls)  \T
y(t) = y(co) exp {ft (m) 1 +0(1))ds}

and y(t) — y(oo0) € (0,0) as t — oo.

Note that if we want to deal with SV solutions in the complementary case
0 > —1, we must look for them in the class M* (positive increasing solutions).

3.7 Half-linear differential equations having regularly
varying solutions

Kusano and Mari¢ in [94] deals with the question whether for any distinct real
constants 91 and 9, there exists a differential equation of the form which
possesses a pair of solutions y; € RV(3;), i = 1,2. The function w which appears
in the theorem is assumed to satisfy conditions from the definition of regularly
varying functions with respect to w, see Definition[I.10]

For any [91] # [9;| define

911 — 182 921941 — 849,/

M(Sll ‘92) = 81 — 192 7 N(Sll ‘92) = 191 _ 82

and observe that
MO1,9)s0 I +9,s0.

Theorem 3.16. Let 91 and 9, be any given real constants such that [31| # [32].
(i) Suppose that r satisfies

r17B() ~ KaoMO192=1 (1) (1) (3.94)

ast — oo for some positive constant K. Let M(91, 92) > 0and p be conditionally integrable
on [a, 00). Then equation possesses a pair of solutions y; € NRV ,(@71(8y)),i=1,2,
if and only if

N(¥1,92)

M—(\91, 5 (3.95)

lim K 1@ DME1,92)(p) f p(s)ds =
t

t—o0

(ii) Suppose that r satisfies

B = KaoMO1r92=1 (1) 0/ (1)
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for some positive constant K. Let M(31,92) < 0 and w*M(31, 92)p be conditionally inte-
grable on [a, ). Then equation possesses a pair of solutions y; € NRV,(D71(9))),
i=1,2, if and only if

. _ ® = 1)N(31, 92)
lim K¢ 1 @M%l ¢ f w™MO192)p(5) ds = (a .
fim ® | Pe) IM(S7, 92)

Proof. (i) Suppose M(91,92) > 0. For arbitrary real numbers 91,9, choose A in
equation (3.13) as

_ N(1, )

- M8, %)

Then, its only two real roots are

_ S
C MaTL(84, 8y)’

i

i = 1,2. Further, choose function r in equation (3.1) such that for some constant
K>0,
rB(t) ~ KaoMO1r92-1 (1o (1)

as t — oo. Whence due to R,(t) = fot r1~F(s)ds and (3:94), condition (3.56) be-
comes (3.95) and an application of Theorem 3.6|asserts that equation (3.1) has two

solutions :
‘ (%)
e NRV (5555 )
i = 1,2. By applying the basic properties of generalized RV functions,
>1(3))
M(91, 92)

O(9))

RY _—
R ( M(91,97)

) = RVom(s,,s) ( ) = RV, (@7 (3)),
i = 1,2, whence we conclude that the solutions y;, i = 1,2 of belong to
NRV ,(D71(9))),i = 1,2, as desired.

(ii) The proof of this part is similar to that of (i); this time we utilize Theorem
O
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Emden-Fowler type equations and
systems

4.1 Introductory and historical remarks

One of typical examples of the objects studied in this chapter is the second order
Emden-Fowler type (or the generalized Emden-Fowler or the quasilinear) equation

(r(O)Pa(y))" + p(O)P,y(y) = 0, (4.1)

@, (u) := |u|*, where a,y € (0,00) and r > 0,p are continuous on [a,00). If @ =y,
then reduces to the half-linear equation of the form (3.2). Note that the power
in @, is shifted by one in comparison with the power in ® which was used in
the previous chapter. But since here we start with zero, while formerly it was
with one, the both nonlinearities are practically the same. We decided for these
conventions because they are very usual in the literature when studying half-linear
and quasi-linear differential equations.

First we give few historical remarks. In the study of stellar structure, the
Lane-Emden equation

y'(t) + %y’(t) +y'(H) =0 (4.2)

was considered. This equation was proposed by Lane [102] and studied in detail
by Emden [31]. Fowler [41}42] considered a generalization of this equation, called
Emden-Fowler equation

ty” + Cy'(t) + Dt°y’ = 0.
Note that (4.2) has the self-adjoint form (?y’) + t*y? = 0. By the change of
variable t = 1 / &, (.2) becomes Ly + y =

dzz
& T’ + t”_l = 0. The work of Emden also got the attention of physicists outside

the field of astrophysics. For instance, the works of Thomas [164] and Fermi

0, and by the change of variable y = n/t,

109
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[40] resulted in the Thomas-Fermi equation, used in atomic theory (see below for
more details). The terminology is somehow confusing. Occasionally is also
called the Lienard-Emden equation and equation (4.4) mentioned below is called
the Emden-Fowler equation (no matter what the sign is). Equation with “+”
is sometimes called the Fowler equation. All these equations are still extensively
being investigated by physicists and mathematicians, and lot of other applications
is known. Some people in the current literature (which is related to our topic) call
the equation

(r(O)Pa(y")) + op(H P,y (y) = O, (4.3)

where p(t) > 0 and 6 € {+1}, as of the Emden-Fowler type when 6 = 1 and as of the
Thomas-Fermi type when 6 = —1. The same terminology is used for corresponding
higher order equations or systems.

As already indicated, equation can be understood also as a natural gener-
alization of half-linear equation (3.1)).

If, in @.3), a = 1and 0 < y < 1, then we speak about sub-linear equation (at
infinity), while if « = 1 and y > 1, then we speak about super-linear equation. For
general a, y € (0, c0) we call sub-half-linear or sub-homogeneous provided a > y,
while we call it super-half-linear or super-homogeneous when o < y. Analogously
we use this terminology for related higher order equations and systems, and also
for the objects where nonlinearities are somehow close to power functions.

As one of the motivations for considerations in this chapter can be the Thomas-
Fermi atomic model described by the following nonlinear singular boundary value
problem

" 1 3/2

y(0) =1, y(e0) =0,

see Thomas [164], Fermi [40]; it is in fact a dimensionless form of the radially
symmetric Poisson equation. As already mentioned, more general equation of
physical interest is the Emden-Fowler one

_[l @_:l“ + 5%V =
( S)_s u 0, (4.4)

where g,0,7 € R. For ¢ # 1, it is reducible to the form y” + t'y” = 0, where 7
depends on g,0,y, and for ¢ = 1, to the form y” + e(“”)ty?’ = 0, see Bellman [12,
Chapter 7]. It is perhaps worthwhile mentioning Fowler’s statement that even for
p(t) ~ t7 as t — oo (instead of p(t) = t°) his method is not applicable.

Before we come to connections with regular variation, note for instance that
Kamo and Usami in [70, 71] consider the equation

(@a(y)) = p(ODy(y), (4.5)

where o, > 0 and p(t) ~ t° as t — oo. Under (natural) additional conditions on
a,y,0, they show that solutions y of (4.5) in a certain basic asymptotic class have
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the form y(t) ~ Kt°, where K = K(a,7,0), 6 = 6(a,,0). The key role is played
by the asymptotic equivalence theorem which says, roughly speaking: If the
coefficients of two equations of the form (4.5) are asymptotically equivalent, then
their solutions which are “of the same type” are also asymptotically equivalent.
Of course, it is the equation with t° as the coefficient which is used for comparison
purposes.

Realizing now that RV functions can be understood as a (nontrivial) exten-
sion of functions asymptotically equivalent to power ones, we can ask natural
questions: How about an extension in the sense that the coefficient in the Emden-
Fowler equation is a regularly varying function? Or, how about an extension in the
sense of replacing the nonlinearity in the Emden-Fowler equation by a regularly
varying function? All these and also further related problems are discussed in this
chapter. Note for example, that such results as the above asymptotic equivalence
theorem cannot be used in a general case. We will describe various approaches,
which are used either in the same settings or in different settings.

4.2 Former results

Before we present a survey of recent results, let us recall some classical works
made in particular by Avakumovi¢, Geluk, Mari¢, and Tomic¢.

421 Superlinear second order equations in the work by Avakumovié
and related results

A substantial generalization of considerations about equation (¢.4) was made by
Avakumovi¢ in 1947, [9]. In fact, it is the first paper connecting regular variation
and differential equations. It deals with the special type of (4.1), namely

Yy’ =pt)y, (4.6)

where p € RV(0) is a continuous function and y > 1. He proved the following
statement.

Theorem 4.1 (Avakumovi¢ [9]). Let p € RV(o) with o > -2 and y > 1. If y is an
eventually positive solution of such that lim;_,e y(t) = 0, then

yipy ~ Ly o+ 2))ﬁ (tzp(t))_ﬁ .

(y = 1)?

The proof is rather involved and proceeds by considering a suitable function
h(t), satistying the relations t° +VLp(t)h7/‘1(t) ~ (1 +y+0)2+0) (with L,(t) = p(t)/t°)
and h”(t) ~ p(t)h’(t), and applying a “variation of constants” y(t) = h(t)z(¢(t)),
where ¢ is a solution of hp” + 2i'¢’ + Shep'?> = 0, 6 > 0. The resulting differential
equation for z is of the form z,, — 6z, = f(t)z( ¢(Hz’~! — 1), where f(t) > C > 0 and
g(t) ~ 1. Tauberian considerations show that z(¢(t)) ~ 1.
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A refinement of the last asymptotic formula is made in Avakumovi¢ [10] along
with applications which lead to refined asymptotic formulae for o(1) solutions of
(4.6).

Only in 1991, Geluk in [46] presented a simple and elegant proof using a result
on smoothly varying functions (see (1.11)) proved by Balkema, de Haan, and
Geluk.

Geluk proved, in fact, the following statement.

Theorem 4.2. Let p € RV(0) with o > =2 and y > 1. If y is an eventually positive and
bounded solution of (4.6), then y € RV(—(c +2)/(y — 1)).

Proof. Substitutions u = y'=7 and v(t) = In u(e’) show that v satisfies the equation
v - — ﬁv/Z — _ew—v

where ¢ = In[(y — 1)e?'p(e")], B = 1/(y — 1). By the observations at (T.11)), applied
to the function (y — 1)£2p(t), there exists a function 11 (t) such that ¢ (t) — ¢1(t) = 0,
i) = o +2,¢9]() > 0ast — oo, and P1(t) < yY(t) for ¢ sufficiently large. By
substituting v(t) = 1 (t) + h(t), the previous equation is reduced to

W —wh' — B’ = —(1 +o0(1))e™ + (0 + 2)(1 + Bo + 2B) + o(1)

with w(t) — 2B(c +2) + 1 as t — oco. We claim that h(t) tends to a finite limit as
t — oo. The following three cases are possible.

(i) K'(t) > 0 for t > tg. Then h is ultimately increasing and its limit exists.
If h(t) — oo, then by the preceding asymptotic equation, for ¢t > tp, one has
h > oh’ + ﬁh’z > h'/2. This implies I’(t) — oo, and so, due to the mentioned
equation, (—1/h’(t)) — p ast — oo. Hence, integrating, —1/h’(t) ~ pt, which
contradicts the assumption /’(t) > 0 for large t.

(ii) h'(t) < 0 for t > tyo. Then h is ultimately decreasing and its limit exists.
The case when h(t) — —oco as t — oo is again disposed of. Because of i1 < ¢, the
equation for v gives

0" +0 + Bt =V Tz =
Since —h(t) — o0 ast — oo, there exists a sequence {t,} such that v’(t,) — +oo as
n — oo. If v’(t,) — oo, then h’(t,) — oo, a contradiction. The case v’(t;,) — —oo
implies u’(exp t,) < 0, hence y’(exp t,) > 0 for n sufficiently large. Since y”'(t) > 0,
this contradicts the boundedness of y.

(iii) K’(t) oscillates. This implies the existence of a sequence {t,} such that
W(t;) =0and t, —» c0asn — oo. If h”’(t,;) < 0 (i.e., h(t) attains its maximum for t,),
then for large n one has h(t,) < —In[(c +2)(1 + o + 26)]. Similarly if h”(t,) > 0, we
find h(t,) > —In[(o + 2)(1 + po + 2p)], a contradiction.

Thus h(t) tends to a finite constant as t — oo which then implies #*p(t) ~ ky'=r
as t — oo. Hence, y is regularly varying of index —(c + 2)/(y — 1). |
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Remark 4.1. The conclusion y € RV(—(c + 2)/(y — 1)) implies that y(f) — 0.
Moreover, y” is regularly varying as the product of two RV functions. Application
of Karamata’s theorem then gives the exact value of the constant k, and thus we
obtain the asymptotic formula from Theorem 4.1]

4.2.2 Superlinear second order equations in the former works
by Mari¢ and Tomié

In this subsection we present results based on Mari¢ [105] and Mari¢, Tomié [110,
111} 112].
We continue in considerations from the previous subsection. Neither Avaku-

movi¢ nor Geluk consider the border case 0 = —2 when the solutions tending to
zero may still exists (see e.g. Wong [168]], Taliaferro [158]]). Consider the equation
¥’ =ptFy), 4.7)

where p(t) and F(y) are continuous and positive for t > 0 and y > 0. Wong's result
reads as follows. Let F(t)/t increase. Then (4.7) has a positive solution which tends

to zero if and only if
f sp(s)ds = co.
The above monotonicity condition is changed to

lim sup su _F(Au) <1
w0 0otg AE)

for some d > 0, by Taliaferro, not affecting the statement of the theorem.

Mari¢ and Tomi¢ (see [105, 110, 111, [112]) in their consideration neither the
monotonicity nor the Taliaferro condition need always to hold, in which case the
condition f ~ sp(s) ds = oo is assumed to hold independently (and the existence of
relevant solution as well). First we present the result concerning the estimates of
solutions.

Theorem 4.3. Let p € RB and such that

f sp(s)ds = co. (4.8)
Assume that F € RBy and such that

u~"F(u) almost decreases for some y > 1 4.9)

as u — 0. Then for every eventually positive solution y of (4.7) tending to zero there holds

F(y(t)) _ 1
y(®) fat sp(s)ds

as t — oco. Moreover, F(u(t))/u(t) € RB.

(4.10)
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Proof. Since the functions p and F are regularly bounded, in addition to hypotheses
and (£.9), due to a relation of RB with almost monotonicity, there hold

t‘sp(t) almost increases for some 9, (4.11)

t?p(t) almost decreases for some w < 6 (4.12)

for large t. Inequalities which yield (4.10) are then the results of a series of various
estimates. This part of the proof is rather technical; for details see [105]. a

Notice that in view of the properties of RV functions, if p € RV(-2), then the
integral I(t) = fa t sp(s)ds is a new SV function which cannot be disposed of in
general by estimating it in a unique way. If e.g. p(t) = t21nt, then I(t) ~ % In?t as
t — oo, whereas if f(t) = 1/(t*Int), then I(t) ~ Inlnt as t — co. However this is

possible by restricting the rate of decay of function p. More precisely, the following
statement holds.

Corollary 4.1. Let p € R8B and such that for large t
t°p(t) almost increases for some 6 < 2.
Assume that F € RBy and such that
u"F(u) almost decreases for some y > 1

as u — 0. Then for every eventually positive solution y of (4.7) tending to zero there holds

Fy®) 1
ONNETO

ast — oo,

Proof. Since 6 < 2, condition is fulfilled and the previous theorem applies.
Furthermore, due to (4.11)),

t t
f sp(s) ds < MEp(t) f s170ds < £2p(t),

which gives the left-hand side of the required inequality. The right-hand one is
obtained likewise by using (4.11) instead of (4.11). O

Next we describe the asymptotic behavior of solutions to {#.7), where we
assume that instead of being regularly bounded, the functions p and F are in
RV and RV, respectively. Then instead of estimates for large t we obtain a
precise asymptotic behavior of the function F(y(t))/y(t) as t — co. We also tacitly
assume that Wong’s condition holds in order not to violate the existence of
the considered solutions y tending to zero even in the simplest cases e.g. such as

y' = tsz(t)yV.
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Theorem 4.4. Assume
p(t) =t°Ly(t), 0>-2, F(u) =u"Lr(u), y>1,

where L, € SV and Lr € SVy. Then for every solution y(t) of (.7) tending to zero as
t — co there holds for t — oo:
(i) for o > =2

1+0+y)2+0) 1

Y T (OLE(y () ~

G-12 L)
and y € RV ((c +2)/(1 - y));
(ii) for 0 = —
VL) ~ ——
(y —1) [ Ly(s)/sds
and y € SV.

Proof. The proof is rather technically complicated. We briefly mention only the
main ideas. The details can be found in [105,[112]]. Put

I(t) = f ‘1 f S u?p(u) du ds,
w1 [ Do

Z(t) = I()G(y(1))-

The function Z satisfies the differential equation

" ’ 7" ’ ’ ’ 7\2 ”
Z7 I _,Z2 I 2r ZE.EE+(§__L)£ GG

Zz' T 7T T @\ T) v e
The behavior of all intervening functions (coefficients) is then determined. Among
others, it is shown that
F(y)

(r-12y

G(y) ~

asy — 0,
1(t) ~ p(t)/((0 + 3)(0 +2))
ast — oo, and
lim Z(t) = c > 0.

t—oo
In addition to various estimates and properties of RV functions, also the Avaku-
movic¢ theorem (Theorem [4.1)) and estimates find application in proving the
above estimations. The asymptotic formula in the part (i) is then the result of these
relations and some additional observations; among others we apply the following
claim: Since H(y) = y”'Le(y) is in RVo(y — 1), we find H € RV(1/(y — 1)) such
that H(H(y)) ~ y. Concerning the part (ii), in contrast to the part (i), first it is
proved that y € SV and then the asymptotic formula is derived (using analogous
arguments to those in the part (i)). O
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Remark 4.2. The natural question of how to obtain asymptotic behavior of solu-
tions y by inverting formulae in Theorem 4.4] turns out to be in general a very
difficult one (but not related to differential equations). In fact, that theorem gives
only that solutions are of the form

. te/A-NL(#)  for o > -2
y - Lz(t) foro =-2

where SV functions L;, L, satisfy the following implicit asymptotic relations

1+0+y)2+0) . 1
(y —1)? Ly(t)’

LN OLA(H 2L (1) ~

1
=1 [ Ly(s)/sds

L (OLe(La() ~

ast — oo,

4.2.3 Rapidly varying coefficient and nonlinearity

In the previous subsection it is assumed for the functions p and F in to be RV
and RV, respectively. Therefore that analysis did not include even such simple
cases as p(t) = e' or F(u) = e”'/*. These examples indicate that we intend to keep
as the main feature of equation (4.7) — to be superlinear and such that F(u) — 0
as u — 0. This type of problem was considered in Mari¢ [105], see also Marig,
Radasin [106, 107, 108].

Let us write equation (4.7)) as

¥’ = f(g®)p(t)). (4.13)

We assume that g(t) is positive, increasing to infinity as t — oo, twice differentiable,
and such that there exists the limit

(8" ()

lim $20_ 12 -

t—o0 g’ Z(t)
For ¢ (1) we assume that it is positive, decreasing to zero as u — 0, twice differen-
tiable, and such that there exists the limit

YW _

lim —————

w0 92(u)

Recall that then A,B < 1;if A <1, then g € RV(1/(1 — A)); if A = 1, then g € RPYV;
if B< 1, then ¢ € RVy(1/(1 - B)); if B =1, then ¢ € RPV.
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Theorem 4.5. Let f € RV (o) witho +2-2A>0for A# 1lando >0 for A =1, and
@ € RVo(y) withy > 1 — B.. Assume that A and B are not both equal to one. Then for
all positive solutions y(t) of (4.13) which tend to zero as t — oo, there holds

¥ (1) (1-A)y+B=1)+(1-B)(o +2-24)
N1 ~
i) ") (7 +B =17 [} S5 (s ds

g'(s)

ast — oo,

Proof. Basically, the proof runs along the same line as the proof of Theorem
except that here we do not have estimates as (4.10), which requires some additional

arguments. We put
t (o 2 s 2
0= [ (5) [ (5a) rera

- [TYE Seb(u))Z
= [ 553 J, [t o

Z(t) == IO G(y(1))-

The function Z satisfies the differential equation

zZ 1)1 @G?°
For details see [105]. O

V| Z’+I” 2 EG’ (Z’ 1')21 GG”

Remark 4.3. Somehow related results were obtained by Taliaferro (see [158) [160]
and also [105, Section 3.6]) for the more general equation v = F(t,y,y’). He
uses some definitions which are — as stated there — “partially motivated” by RV
functions, but his methods make no use of Karamata functions which is the subject
of this treatise.

4.3 Selection of recent results

4.3.1 Introductory remarks

In the last decade, many papers have appeared (and still are appearing) which
are devoted to the investigation of various forms of Emden-Fowler type equations
(incl. systems and higher order equations) in the framework of regular variation.
It is impossible to present here all these results. Instead of this we prefer to make a
reasonable selection of typical results which will show a wide variety of methods
which are employed — this is in accordance with the principal aim of our treatise.

It is worthy of note that there are some overlaps in the papers in spite of
different methods. However, this fact is quite natural, when one realizes that a
typical result is of the form: It the coefficients in an equation are RV, then (at
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least on or all) solutions in certain basic asymptotic classes are RV (with the index
which depends on the indices of coefficients and powers of nonlinearities) and
their behavior is governed by a specific asymptotic formula.

Before we present selected results, let us try to give at least a brief (but com-
prehensive) survey of the literature devoted to this topic, that is investigation of
quasilinear equations in the framework of regular variation.

First note that when we study RV (or somehow similar) solutions we consider
nonoscillatory solutions. There is an extensive literature devoted to classifications
of nonoscillatory solutions and investigation of the existence and behavior of
solutions in the individual classes. One of the most important publications along
this line is the book [79] by Kiguradze and Chanturia. Instead of quoting other
works, note that some related references are spread in this text, in the places where
we utilize the relevant results.

There are various approaches to examine Emden-Fowler type equations in the
framework of regular variation and several independent groups which work on
it.

Existence and asymptotic behavior of RV(1) increasing solutions of the second
order Thomas-Fermi type equation

Y’ = p(t)F(x),

p(t) > 0, in the sub-linear case were studied by Kusano, Manojlovi¢, Mari¢ in [83];
other RV solutions of the same problem are examined in [104] by Manojlovi¢ and
Mari¢. The generalized Thomas-Fermi equation

(@a(y))" = p(O)Dy (y),

p(t) > 0, is considered in the sub-homogeneous case (o > y) by Kusano, Mari¢,
Tanigawa in [100]; existence conditions and formulas for SV, RV(1) solutions and
for nearly RV solutions are established. An asymptotic analysis of RV solutions
to the Emden-Fowler type equation

¥’ +pt)@y(y) =0,

p(t) > 0, is made in the sub-linear case in [84] and existence of SV, RV (1) solutions
is discussed for the same equation in both the sub- and super-linear cases in [85]
by Kusano and Manojlovi¢. The same authors study the sublinear Emden-Fowler
type equation

¥’ +p(t)F(x) = 0,

p(t) > 0, in [86]; existence and asymptotic behavior of SV, RV(1) solutions are
examined, and necessary conditions for the existence along with asymptotic for-
mulas for intermediate solutions are established. A generalized Emden-Fowler
type equation of the form

(r(O)Pa(y))" + p(O)P,y(y) = 0,
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r(t),p(t) > 0, a > y, is considered in [91] by Kusano, Manojlovi¢, and MiloSevi¢
and in [64] by Jaro$, Kusano and Manojlovi¢; its intermediate generalized RV
solutions are discussed. The fourth order sublinear equation

y(4) + op(H)Dy(y) = 0,

p(t) > 0,0 < y < 1, is considered by Kusano and Manojlovi¢ in [87] under the
condition 6 = 1 and in [88] under the condition 6 = —1; existence of (all possible)
RV solutions and their accurate behavior are examined. This equation with 6 =1
is examined also by Kusano, Manojlovi¢, and Tanigawa in [63]. The more general
equation

(Paly”))” + P(t)q))/(y) =0,

p(t) >0, a > y > 0, is considered by the same authors in [93]; all possible types of
positive solutions are examined. Jaro$, Kusano, and Tanigawa in [67] discuss the
existence and asymptotic behavior of RV solutions of the third order sublinear
equation

vy +pt)D,(y) =0,

p(t) > 0, see also the papers [68] [69] by the same authors. The two-dimensional
system

X' = op(t)y?, v = oq(t)xP,

p(t),q) >0, a,p>0,ap <1,06 = +£1, is considered by Jaro$ and Kusano in [61];
strongly monotone RV solutions are analyzed, see also [63]. The same authors
study strongly monotone RV solutions of the second order system

X =p)y*, v =qdx,

pt),q(t) >0, a,p > 0, af < 1, see [62], and strongly decreasing solutions of the

system
/

"= po(h)x® + g2 (Y2,

where p1,q1,p2,92 € RV and a1, f1,a2,p2 > 0, as presented by Tanigawa at the
conference Equadiff 13. Kusano and Manojlovi¢ consider the odd-order equation

X =pi () + q(O)yP, y

]/(2"+1) +op(HD(y) = 0,

p(t) > 0,0 < y < 1. Existence and asymptotic behavior of all possible types of
positive solutions to this equation is studied in the framework of regular variation;
the case 6 = 1in [89] and the case 6 = —1 in [90].

In many results of the above mentioned papers, various modifications of the
following technique is utilized: Certain asymptotic relation is investigated which
can be considered as an “approximation” of the given differential equation rewrit-
ten to a certain integral form; properties of RV functions — mainly the Karamata
integration theorem — are then extensively used there.A priori bounds are ob-
tained. Further, the Schauder-Tychonoff fixed point theorem in locally convex
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spaces plays an important role. For some of the equations there has been made a
complete analysis of the existence and asymptotic behavior of regularly varying
solutions which belong to all possible Kiguradze type classes. Various utilizations
of this technique are presented in Subsections4.3.2 [4.3.3/4.3.4] and £.3.6]

A somehow different approach is represented by the works of Evtukhov and
others. Note that — in some of these works — the conditions which are usually
imposed on the coefficients and nonlinearities in the equation are not directly in
terms of regular variation (or rapid variation), but in fact they belong to these
classes (or are close to them) due to known results (like the Karamata theorem)
which enables an alternative expression. Similar observations hold for some of
the classes of solutions which are studied. It is worthy of note that some of
these papers (especially the older ones) do not use (or even mention) the concept
of regular variation at all, even though the considerations are “close” to regular
variation. Typically, both types of equations (Emden-Fowler and Thomas Fermi)
are simultaneously studied and also both the cases (sub- and super-linearity)
are considered. Even a negative power or index in a nonlinearity is sometimes
allowed. The conditions for the existence of solutions in various asymptotic classes
(they are called P, and have various modifications) are derived and asymptotic
representations are established. Evtukhov and Samoilenko in [36] consider the
equation

Yy = Sp(F(E),
p(t) > 0,06 = +1. The second order case is studied by Evtukhov and Kharkov in [34]
and by Evtukhov and Abu Elshour in [32], and the third order case by Evtukhov

and Stekhun [37]. Bilozerowa and Evtukhov in [13] examine the generalization of
the Emden-Fowler equation in the following form

_

n—

y™ = op(ty | | Fiy™),

1

Il
o

p(t) > 0, 6 = £1; the second order case is considered in [33]. The equation

v’ =) oipit)(1 + qit)Fao(y)Fa (v)
i=1

is studied by Kozma in [82]. Evtukhov and Vladova in [39] concentrate on the
cyclic system

y; = 0ipi(Fi(yis1),
i=1,...,npi(t) >0, 6; = £1, y,+1 means y;; the two dimensional case is studied
in [38]. Subsection [4.3.7|offers a more detailed description of the method used by
Evtukhov et al.

Another direction of the approach in the study of objects related to Emden-
Fowler type equations and regular variation is represented by the following three
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works. A substantial part of these works is devoted to a generalization of the
results described after (£.5). In other words, typical feature is that not only the
existence of RV solutions is studied and asymptotic formulas are established,
but, in addition, RV behavior of all solutions in a given basic asymptotic class of
solutions is guaranteed. Only some of the Kiguradze type subclasses have been
examined in such a way, namely the most extreme ones. Matucci and Rehdk in
[123] study decreasing RV solutions of the coupled system

(PP (x))" = p(O)Pa(Y),
@OPp(y")) = PHYPu(x),

p(t), r(t), (t), Y(t) > 0, ap > A, see Subsection [4.3.5 for couple of notes. Strongly
monotone solutions of the system

y; = opi(Fi(yis1),

i=1,...,n pi(t) > 0,6 = £1, y,41 means y;, are investigated by Rehék in [146]
and by Matucci and Rehak in [124]. See Subsection where this approach is
discussed in details. A slight modification of the setting of the latter paper enables
us to include also equations with a general ®-Laplacian, see Subsection[5.1.2]

4.3.2 Asymptotic behavior of SV and RV(1) solutions of sublinear
second order equations

The result in this section is selected from the paper [86] by Kusano and Manojlovié
as a representant of the below described method. Consider the second order
Emden-Fowler type equation

¥’ +p(HF(y) =0, (4.14)

where p : [a,00) — (0, ) is a continuous function with p € RV(0), 0 € R, and
F :(0,00) — (0, 0) is an increasing continuous function with F € RV(y). The sub-
linearity condition 0 < y < 1 is assumed. Recall that the following generalization
of the known Belohorec theorem holds: Equation has a positive solution if
and only if [ p(s)F(s)ds < o,
Suppose that has a positive solution y (called intermediate) such that

lim Y& _ : _

lim -5 = 0 and tlgg\o y(t) = oo. (4.15)
From the conventional classification of eventually positive solutions, in addi-
tion to intermediate solutions, only the two following (and somehow easier)
classes are possible: lim;_ y(t) = const > 0 (the so-called minimal solutions)
or limi . x(t)/t = const > 0 (the so-called maximal solutions); the terminology
may come from the fact that a positive solution y always satisfies c1 < x(t) < caf,
t > Ty, for some positive constants ¢y, c, € R. It is clear that a minimal solution is
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in tr-8%YV and a maximal solution is in tr-RV(1). However, as we will see, there
can also be nontrivial SV or nontrivial RV(1) solutions which, of course, must
be sought among intermediate solutions. Note that in the sub-linear case, the
sufficient and necessary condition for the existence of a solution y satisfying
reads as

f"" p(s)F(s)ds < co and foo sp(s)ds = oo,

see Kusano, Ogata, Usami [101]. Since y’(c0) = 0, integrating (4.14) first from ¢ to
oo and then from a to t, we have

t 00
Y1) = y(a) + f f P(OE(y(0) dr ds, (4.16)

t > a. It is somehow natural to search for a solution of (4.14) with specific asymp-
totic behavior at infinity as a fixed point of the integral operator

t 00
Fy(t) = C+ f f P(OE(y(D)) dr ds,

t > a,in some suitably chosen set X of C[g, o0). A thorough analysis can be made of
the existence and the precise asymptotic behavior of RV solutions of the integral
asymptotic relation

t 00
y(t)~ff p(t)F(y(t))dtds, t— oo, (4.17)

which can be considered as an “approximation” of (4.16). Note that follows
from (.16), using that y(co) = co. Then the set X with the required properties can
be found by means of RV solutions of the integral asymptotic relation (4.17).

It is worthy of note that an important role in the proof is played by the fact
that the auxiliary linear second order equation possesses SV and RV(1) solutions.
More precisely, we will utilize the following statement which follows from Theo-
rem[2.2land a simple application of the properties of RV functions to the (positive)
solution y(t) = c1y1(t) + c2ya(t), c1,¢2 € R, {y1, y2} being a fundamental set of RV
solutions.

Lemma 4.1. If
tlim tf g(s)ds =0,
—00 ¢

then every (eventually) positive solution of the equation y"” + q(t)y = 0, q(t) > 0, is SV
or RV(1).

We now give the conditions guaranteeing the existence of nontrivial SV and
RV (1) solutions and establish asymptotic formulae.
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Theorem 4.6. Suppose that p € RV (o) and F € RV(y) withy € (0,1).
(i) Equation possesses nontrivial SV solutions if and only if ¢ = =2 and
fa " sp(s)ds = co. The asymptotic behavior of each nontrivial SV solution y is governed

by the unique formula
t
y(t) ~ F! (f sp(s) ds)
a

F(tu(t)) ~ F(t)u’ (t) (4.18)
ast — oo, for every u € SVNCL. Equation (£14) possesses nontrivial RV (1) solutions if

and only ifo = —y—1and fa * p(s)E(s) ds < co. The asymptotic behavior of any nontrivial
RV (1) solution y is governed by the unique formula

ast — oo.
(ii) Let, moreover,

1

y(t>~t(<1—y> f p(s)l—"(s)ds)l_y

Proof. We give the proof only of the “if” part. The “only if” part is proved in [86]
and extensively uses the Karamata integration theorem and some basic properties
of RV functions. Let xo(t), x1(t) be the functions on [a, c0) defined by

xo(t) = F! (ft sp(s) ds),

xl(t)téﬁ(t), where &i(t) = (1 - )/)f p(s)F(s)ds € SV.
t

ast — oo,

The proof will be performed simultaneously and in two steps. In the first step
we show that possesses intermediate solution y(t) satisfying kxo(t) < y(t) <
Kxo(t) or kx1(t) < y(t) < Kxy(t), t > T, for some positive constants T > a2,k <1,K > 1
depending on whether the assumptions in (i) or (ii) are satisfied, respectively.
Then, in the second step, with the help of Lemma we show that solutions
constructed in the first step are nontrivial SV, resp. RV (1). Since we perform the
proofs for x;(t). i = 0,1, simultaneously, the subscripts i = 0,1 will be deleted in
the rest of the proof.

Step 1. It is not difficult to show — the Karamata integration theorem plays an
important role and we use — that x satisfies the asymptotic relation

x(t) ~ ff p(t)F(x(7)) dr ds (4.19)

ast — oo. Let K, k be fixed positive constants such that K7 > 4 and K177 < 1/2.
Note that k < 1 and K > 2. Using that F(Kx(t)) ~ K”F(x(t)), from (4.19) we have

t )
f f p(T)F(Kx(t)) dT ds ~ K"x(t)
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as t — oo, which implies the existence of Tp > a depending only on K such that

t o)
f f p(T)F(Kx(t))dt ds < 2K7x(t),
Ty Vs

t > Tp. Let such a Ty be fixed. We may assume that x(f) is increasing on [Ty, o).
Since x(t) — oo and F(kx(t)) ~ k" F(x(t)) as t — oo, from (4.19) we have

t 00
f f p(t)F(kx(t))dtds ~ k" x(t)
To Js

as t — oo, and so there exists T; > Ty depending only on k such that

t 00
fT f p(t)F(kx(7))dtds ~ k%x(t),

t > Tq. Let such a T7 be fixed. Let us define X to be the set of continuous functions
y(t) on [T, oo) satisfying

x(To) < y(t) < Kx(t) forTo<t<Ty, (4.20)
kx(t) < y(t) < Kx(t) fort>Ty. ’

It is clear that X is a closed convex subset of the locally convex space C[Ty, o)
equipped with the topology of uniform convergence on compact subintervals of
[To, ). We now define the integral operator

t 00
Fy(t) = x(To) + j; f p(T)F(y(t))dtds,

t > Ty, and let it act on the set X defined above. It is not difficult to verify that
¥ is a self-map on X and sends X continuously to a relatively compact subset
of C[Ty, ). Therefore we are able to apply the Schauder-Tychonoff fixed point
theorem to conclude that there exists y € X such that y(t) = Fy(t), t > Ty. Itis clear

from (4.20) that y satisfies
kx(t) < y(t) < Kx(t), (4.21)

t > Tp, which completes the proof of the first step.
Step 2. Let y be a solution obtained in the first step. It can be regarded as a

Ey(®)
v - Ve

, v W)
lim ¢ f s ds = 0. 422
pmt | P ) V) (4.22)
Since y satisfies (4.21) it suffices to show that

tlggtft p(s)% ds =0.

solution of the linear differential equation y” + g(t)y = 0 with g(t) = p(t)
will show that
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Suppose first that the assumption of part (i) are satisfied. The using that x(t) =
xo(t) € SV is a solution of the differential equation x;, = tp(t)F(xo) and applying
the L'Hospital rule we obtain

lim ¢ f ) p(s)M ds = lim i
= Jt

x(s) e xo(t)

since for our SV xq the last limit is equal to 0. If the assumptions of part (ii) are
satisfied, then y(t) = x1(t) € RV(1). Using (4.18) with application of the L'Hospital
rule, we get

tli—{gt I i P(S)FSZZS))) ds = tlgg t ft‘ " S_y_le(S)w ds

s&,7(6)

i [ LGS
S [ G

— lim Ly(t)L(t)
oo &P

fa‘ M ds = [1 p(s)F(s)ds < oo,

by the Karamata theorem we get

Since

Ly (t)Lr(t)
m — =Y,
(=00 [T Ly (s)Lp(s)/s ds
and so (4.22) follows in both the cases (i) and (ii). It follows from Lemma {4.1| that
y € SV URYV(1). But if the assumptions in (i) hold, noting that x(t) = xo(t) € SV,

we conclude that y must be SV, and if the assumptions in (ii) hold, since x(t) =
x1(t) € RV(1), solution y must be RV(1). O

Condition (¢.18) amounts to requiring that SV part Lr of F satisfies
Lr(tu(t)) ~ Lr(t) (4.23)

as t — oo for every u € SV N Cl. Compare this condition with #.76), (.95), and
(4.96). Many (usual) SV functions satisfy (4.23). For instance, Lr(t) = HkN: 1 (Iny 1),
ar € R, or Lr such that Lp(t) — ¢ € (0,0) as t — oo, etc. Condition (4.23) is not

satisfied e.g. by Lr(f) = exp (TTjL, (Ing %), i € (0,1).

4.3.3 SV solutions of second order super-linear equations

In this section which is based on Kusano, Manojlovié [85] we discuss the existence
and behavior of SV solutions to the equation

¥’ +pt)@y(y) =0, (4.24)
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where p : [a,00) — (0,0) is a continuous function. The super-linearity condition
y > 1is assumed.

By the famous Atkinson result, is oscillatory (i.e., all of its nontrivial
solutions are nonoscillatory) if and only if

f:o sp(s) ds = co.

Recall that under the assumption of sub-linearity (i.e., 0 < y < 1), similar type
of result was established by Belohorec, and reads as follows: Equation (.24) is

oscillatory if and only if
f s"p(s)ds = oo.
a

Eventually positive solutions can be classified into the three types in the same way
as in the previous section.

The proof of the main result heavily depends on a similar result for the linear
differential equation

vy +p(t)y =0. (4.25)

More precisely, first we form an infinite family of linear equations of the form
and then select with the help of fixed point techniques one equation from
the family whose solution would give birth to the desired RV solution of Emden-
Fowler equation (4.24). The feasibility of such a procedure is assured by the
extensive use of the following statement which can be proved by means of the
contraction mapping theorem. We define the mapping

00 2
Tv(t):tft (M) ds

and consider it on the set
{v e GIT, 00): 0 < o(t) < p(t), t 2 T},

where Q, ¢ are defined below in the theorem, and Co[T, o) denotes the set of all
continuous functions on [T, o) which tend to zero.

Lemma 4.2 ([85]). Assume that there is a continuous function @(t) : [a,00) — (0, c0)
which is decreasing to 0 as t — oo and such that Q(t) < @(t) for large t, where Q is defined

by
Q) =t f pls) ds.
t
Then equation (4.25) has a SV solution y in the form

t
y(t) = exp {fT Mds},

S
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t > T, for some T > a, in which v(t) is a unique solution of the integral equation

) 2
U(t):tft (M) ds,

s
t > T, and 0 < o(t) < 4¢?(t) for only t > T.
We will use the notation

Qut) =t ft p(s)L’"1(s) ds.

Theorem 4.7. Let y > 1. Assume that L € SV is such that

t
L(t) = L(a) exp { f 6Ls(s)ds} oo with dr(F) \, 0 (4.26)

as t — oco. Suppose that there exists a constant K > 0 such that
Qr(t) < Kér(t) for large t. (4.27)
Then equation (4.24) possesses a SV solution y such that y(t) < L(t) for all large t.

Proof. First observe that due to (4.26) we have

0 T o) |
(SL(t) = tm >0, L TdS =00

Let u € (0,1) be a given constant. There exists T > a such that holds fort > T

and
2K

L=X(T)
Define E to be the set of positive nondecreasing functions &(t) on [T, oo) satisfying

1 <&@t < L@)/L(T) for t > T. It is clear that E is a closed convex subset of the
locally convex space C[T, ). For £ € E put

2650() < fort>T, (4.28)

pe=p0E 0, Q=1 [ peoras,
t
and consider the family of ordinary linear differential equations
X" +p:()x=0, &ek. (4.29)

For each £ € E we have by (4.27) and (4.28)

© (L)) Kor( _ on(t) _
Qe(t) <t ft p(s)(ﬁ) dsSU_l(T)S 5= =0(), (4.30)




128 Section 4.3

t > T, and so from Lemma we see that for each £ € E equation (4.29) has a SV
solution x¢, which is increasing and expressed in the form

t
xe(t) = exp {fT‘ wds}, (4.31)

t > T, where v¢ is a unique solution of the integral equation

00 2
=i [ (RO,

t>T,and
t
ve(t) < 52(H) < 6LT() (4.32)

Using (4.30) and (4.32) in {.31)), we conclude that

Lo L(t
1§x5(t)§exp{ﬁ ?ds}:%,

t > T. Let us now define the mapping 7 : & — C([T, o) by
TE(t) = xe(b),

t > T. It is immediate that 72 C E. Further, relative compactness of 7 Z follows
from the Arzela-Ascolilemma. To show that 7 is continuous is a little bit laborious,
and we just note here that the Lebesgue dominated convergence theorem plays
an important role. For details see [85]. Thus, all the hypotheses of the Schauder-
Tychonoff fixed point theorem are fulfilled, and so there exists £ € E such that
E(t) = T E(t) = xe(t) for t > T. Since x¢(t) is a solution of linear differential equation
(4.29), we have for t > T that

0= x (1) + pe(Dxe(t) = £ (1) + p(HE T BE) = £ (1) + p()E (1),
which implies that & is a solution of equation (4.24). It is obvious that £ € SV. O

Example 1in [85] suggests that super-linear Emden-Fowler equations may have
both trivial and nontrivial SV solutions at the same time. It is therefore important
to establish a means by which one can distinguish nontrivial SV solutions from
trivial ones for a given Emden-Fowler equation. Under the stronger assumption
than {#.27), one can determine the exact asymptotic behavior of any nontrivial SV
solution of super-linear Emden-Fowler equations as the following theorem shows.

Theorem 4.8. Let y > 1 and (4.20) hold. Suppose that p € RV(—v) for some v > 1 and
that
L'()

Qr(t) ~ tL(t)

= 0r(t)



Chapter 4 129

as t — oo, where 0y, is required to be SV function. Then equation (4.24) may possess
a S8V solution y only if v = 2, and in this case any nontrivial SV solution of equation
(4.24) has one and the same asymptotic behavior

y(t) ~ L(#) (4.33)
ast — oo.

Proof. Since p € RV(-v), we have that p(t) = t7VL,(t), L, € SV, and application of
the Karamata integration theorem gives

2—v

Qr(t) =t ft ) sTVLy(s)L?7Y(s) ds ~ ! Ly(hL (1) (4.34)

v—1

as t — oo. Thus, due to the assumption that Qr(t) ~ 01.(f) € SV ast — oo, from
(4.34) we conclude that v = 2 and

L'(#)
L/ (f)

Ly(H) ~t

as t — oo. Suppose that (4.24) has a nontrivial SV solution y. Integrating (4.24)
from t to co and using the Karamata integration theorem, we have

0 L L,(t L’
vo= [ rowes= [T L2yea~ 2o~ L8y

as t — oo, which implies that
v Lo
y') L)
as t — oo. Integrating (4.35) over [t, o) and noting that y(t) — oo and L(t) — oo as
t — oo, we obtain

(4.35)

v L)

y -1 y-1
as — oo, which immediately yields (4.33). m|

4.3.4 Intermediate generalized RV solutions of second order
sub-half-linear equations

In this section which is based on the paper [91] by Kusano, Manojlovi¢, and
MiloSevi¢ we want to concisely describe how the approach based on the approx-
imation of certain Emden-Fowler equation in an integral form by means of an
asymptotic relation and on the use of the fixed point theorem can be combined
with the concept of general regularly varying functions.

Consider the equation

(r(OPa(y')) + p()Ps(y) =0, (4.36)
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where @ > f > 0 (which is the sub-half-linearity condition), r,p are continuous

functions, and r satisfies fa “r () dt < oo. Note that a similar analysis in the
case where this integral diverges was made by Jaro$, Kusano, Manojlovi¢ in [64].

Denote o
Rmzfrﬁ@x
t

We have the following conventional classification of positive solutions :

(i) lims—eo y(t) = const > 0,

(if) im0 y(t) = 0, lim¢ 00 y()/R(t) = oo,

(iii) lims—eo y()/R(t) = const > 0.
Solutions of type (ii) are called intermediate solutions. Sharp conditions for the
existence of such solutions was obtained by Kamo and Usami in [72].

Let y be an intermediate solution of on [a, c0). Then fa " p(s)yP(s)ds = oo
and

1

~ 1 o s [ '
y(t):f —l(r(a)(—y (s) +f p(fc)yﬁ(fc)dfc) ds, (4.37)

t ra a
t > a. It follows therefore that y satisfies the integral asymptotic relation
00 1 S 1
y(t) ~ f —1( f p(0)y? (T)dT) ds, (4.38)
t ra a

as t — oo, which is regarded as an “approximation” of at infinity. The proofs
of the main results are essentially based on the fact that a thorough knowledge of
the existence and asymptotic behavior of generalized RV solutions of canbe
acquired. As a matter of fact, the “only if” part of the below presented theorem is
an immediate consequence of manipulation of by means of regular variation.
The “if” part is proved by solving the integral equation

y(b) = f rl( f p(¢>yﬁ<T>dT)”ds,

with the help of fixed point technique, the essence of which is based on detecting
fixed points of the integral operator

Fy(t) = j; ll( f P(T)yﬁ(f)df)a ds,
Ta a

X =1{y € Cla, 00) : mx(t) < y(t) < Mx(t),t > a},

lying in the set

m, M being a suitable numbers, and

a+l [17 leTﬁ
(0 = (R (O (t)p(t))

a(-p)*(p +1)
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where p is given below in the theorem. The operator ¥ is continuous self-map
on X and sends it into a relatively compact subset of C[a, o). To show that the
obtained solution y is indeed RV with respect to 1/R, we apply the generalized
L'Hospital rule which yields

o 4 s 1
~ il B
¥t ft . ( f PO <r>dr) ds
ast — oo.

Thus we have briefly described the proof of the following theorem.

Theorem 4.9. Let r € RV1r(n) and p € RV1r(0). Equation (4.36) has intermediate
solutions y € RV1,r(p) with p € (=1,0) if and only if

ﬁ—g+1<a<a—g+1, (4.39)

in which case p is given by
a—a—1+g
.
and asymptotic behavior of any such solution y is governed by the unique formula

0 ~ RO tp®)
a(=p)*(p+1)

ast — oo,

Note that the cases where o is equal to the border values in (4.39) are also
discussed in [91] and lead to the existence of nontrivial SV;,x and RVq,r(-1)
solutions.

4.3.5 Strongly monotone solutions of coupled systems

In the first part of this section we present the results concerning the so-called
strongly decreasing solutions of the coupled system

(POP)) = pBOP(y), w10

@) = POD(x),
which were established by Matucci, Rehak in [123]. We do not give the proof since
its main ideas can be extracted from the proof of subsequent Theorem which
deals with a more general case. Note that originally, there are some differences
between the proofs. Rather we focus on comments and applications. In the second
part, we mention the work of Jaro$, Kusano [62] in which the coupled system in
a more special form is considered; the approach used there is based on similar
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ideas as in the previous subsections. We present a result which deals with mixed
strongly monotone solutions.

In (4.40) we assume that a, 8, A, u are positive constants, and p, g, ¢, ¢ are posi-
tive continuous functions defined on [4, 00), 2 > 0. Further we suppose that system
(4.40) is subhomogeneous (at o), i.e.,

apf > Ap.

In contrast to the most of related works, we do not pose in general any condition
on divergence or convergence of the integrals

P:fmp—%(s)ds, Q:fooq_ﬁl"(s)ds, (4.41)

and we do not explicitly distinguish among particular cases. In fact, all possible
cases (including the mixed ones) are covered by the results. If (x,y) is a solution
of (#.40), then by quasiderivatives denoted as x11, y!!, we mean

M =pa,), yM=q041).

Let DS denote the set of all positive decreasing solutions of (4.40), i.e., all
solutions whose components are both eventually positive and decreasing. Note
that, due to the sign conditions on the coefficients, any solution of has
necessarily both components eventually of one sign and monotone. If P = Q = oo,
then limj_e x1(t) = limjoe y™M(t) = 0 for any (x,y) € DS. Indeed, —x1 is
eventually positive decreasing. If lim;,« —xl1(t) = ¢ > 0, then p(t)(—x(t))* = ¢
or —x'(t) > cip‘ﬁ(t), t > top with some ¢y > a. Integrating the latter inequality, we
get x(t) < x(to) — ca ft; p‘f‘v(s) ds — —oo ast — oo, a contradiction. Similarly we
prove lim;_,. y!I(t) = 0. However, in general, for positive decreasing solutions,
the limits of quasiderivatives do not need to be zero. Observe that any positive
decreasing solution have both the components and their quasiderivatives tending
to nonnegative resp. nonpositive numbers. Among all these solutions we are
interested in the so called strongly decreasing solutions, which we denote as

SDS = {(x, y) € DS : lim x(t) = lim y(t) = lim xM(p) = lim Yyl = 0};

notice that other types of DS solutions are somehow easier.

The integral expressions below play important roles in existence results for
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strongly decreasing solutions:

I(t) :=Im ﬁjj’(p(s) fsw(ﬁ [mw(r)dr)% dr Ads Edu,

Lt :=ft°° ﬁfumnp(s) fsm(r%frmw)df)%dryds %du,

I5(t) :=ftoo§0(u) fum ﬁfsm P(r) frm p;(T) dt Hdr %ds Adu,
p

2=

Iy(t) := IOO Y(u) fum }%‘fsm @(r) frm q;(T) dt Adr ds| du.

The following existence result holds. Its proof can be found in the paper [123] by
Matucci, Rehék; the Schauder-Tychonoff fixed point theorem is the main tool.

Theorem 4.10. If I;(a) < oo for at least one index i € {1,2,3,4}, then SDS # 0.

Next we describe the so-called reciprocity principle. This toolis very useful in the
proof of the existence result, but also in the proof of the main result devoted to exact
asymptotic behavior. In fact, it enables us to extend the existence and asymptotic
results made under certain setting to “new” situations. Let (x,y) € DS. Set
u = —x1, v = —ylll. Then (1, v) is an eventually positive decreasing solution of the
reciprocal system

pr(
( y cDl(l")) =
pE@E H
Observe that (4.42) has the same structure as (4.40), and is subhomogeneous.
Indeed, 1/(Ap) > 1/(af). Moreover, the quasiderivatives of u and v, i.e., (p‘%(b 1 (u')

(4.42)

( ' fDl(u’)) = L%CP (©),
q
1

and 1/)_%(13 1(v’), are equal to —y and —x, respectively. Conversely, if (1,v) is an
u
eventually positive decreasing solution of (4.42) and we set x = —gb_%(b 1(v") and
u
y= —(p‘%q)l\(u’), then (x,y) € DS and xl = —u, yll = —v. Hence, with the use of

these relations, it holds

(%, ) is a strongly decreasing solution of (4.40)
() (4.43)
(u,v) is a strongly decreasing solution of (4.42).
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It is easy to see that the roles which are played by the integrals I and I, for system
(4.40) are played by the integrals I3 and I, respectively, for system (4.42).
From now on we assume

p € RV(), g € RV(), ¢ € RV(0), ¥ € RV(p).

We set
1

A:aﬁ—Ay

and
v:A(ﬁ(a—y+1+a)+/\(ﬁ—6+1+9)),

(4.44)
a):A(a(ﬁ—5+1+Q)+y(a—y+1+a)).
Further we denote
Vil = v=-1a+y, oM = (w=1)p+6. (4.45)
Theorem 4.11. Assume
v<0,w<0 v <0 oM<o. (4.46)

Then SDS # 0. Further, for every (x, y) € SDS there hold (x, y) € RV (v) X RV(w) and

A\aBA w\apA
x(t) ~ (KlKZ“) FLIB, v ~ (Ksz) Lo (b) (4.47)
as t — oo, where
-1 -1
Kj=——, K= ——, (4.48)
v (—vit)a w (—wl)?
and
Bra ByanD
L(pL v L(PLi
L= 51 e SV, Ly, = I € SYV.
L,L) L,L5

Remark 4.4. (i) Under the assumptions of Theorem the quasiderivatives of a
strongly decreasing solution (x, y) of (4.40) satisfy

\apAA
(KQKf)
0

A\apAp
. (Kle) " . .
—yl(#) ~ i LyOLY () € RV ().

—x1(f) ~ " Lo(OLA (1) € RV (vIY)
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(ii) The asymptotic formula (4.47) can alternatively be written in terms of the
coefficients,

7

t"‘“(p(t) B/(ap—Au) tﬁ.;.]l)b(t) A(ap=Aw)
x(t)wcl( 0 ) ( 9 )

Lyt af(ap=Ap) -+ (f) f/(ap=Ap)
y(t)NCZ( 70 ) ( o) )

as t — oo, where C; = (KyK}/*)#/@f=) and C; = (KoK:/P )b/ (ap=An),

(iii) If the components of a (decreasing) regularly varying solution to (4.40) are
eventually convex, then they are both normalized regularly varying. Note that
the eventual convexity of decreasing solutions of (4.40) can be guaranteed, e.g., by

p(t) =q(t) =1.
(iv) The assumptions of Theorem can be replaced by any of the following
inequalities

ﬁ p

Q+1<m1n{06 B,6— ﬁ— (c+1),0- ﬁ——(a+1+a 7/)} (4.49)
or
. o a
a+1<m1n{0,7/—0z,7/—a—E(Q+1),y—oz—ﬁ(g+1+ﬁ—6)} (4.50)
or
a—y<min{O,—%(Q+1),—%(Q+1+ﬁ—5),

—%(g +1+p-0)— %(G + 1)} (4.51)

or
p- 6<m1n{ ﬁ(0+1) —E(o+1+a V),

—%(a +1+a-y)- %(Q + 1)}, (4.52)

and the statement remains valid. Moreover, the following equivalence among the
sufficient conditions hold:

(d.46) & (@.49) or @.50) or (£.51) or (£.52). (4.53)

As an example of typical setting, assume P = Q = co. Then necessarily a > y
and B > §; the sulfficient condition (4.46) reduces to

v<0,w<0. (4.54)
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Indeed, vl = var — @ + y < vy < 0. Similarly we obtain w!!l < 0.

Another example of a typical situation is when

faooqo(t)dt:faooyb(t)dt:oo

is assumed. This condition implies 0 +1 > 0, o+ 1 > 0, and (4.46) reduces to
vl < 0,0l < 0. Tt can be also quite easily observed how the “mixed” cases, for

instance,
f p‘é(s) ds = M,f q_%(s) ds < oo,
a a

£w¢(t)dt=M,£w¢(t)dt<m

can be covered by the above results.

or

The main theorem can be applied also in some special situations where the
coefficients of are not regularly varying; we use a change of the independent
variable. Let s = ((t), where C is a differentiable function such that ’(t) # 0 on
[a, ). Set (w, z)(s) = (x, y)(C1(s)), (! being the inverse of {. Since d/dt = {’'(t)d/ds,
system (4.40) is transformed into the system

d dz A

(160 )) = d00u0), -

where

pr=(pol) @u(CoCh), §:=(qoC) Byl oL,

. @l . yol

P Ter VT e
Clearly, is of the form (4.40) and is subhomogeneous. If C is unbounded
with (" > 0 and such that p, §, @, Y € Uger RV(9), then the results can be applied
to ([4.55). To illustrate a possible application, take, for example,

p(t) = €' h(t), qt) = e ha(t), p(t) = e”ha(t), Y(t) = e?ha(t),

where y,06,0,0 € R and h; € Jger RV(9), i = 1,2,3,4. In such a case we can set
C(t) = ¢'. Thus t = Ins and [a, ) is transformed into another right half-line. We
then get

p(s) = s""Hy(s) € RV(y + a), where Hy :=hj oln,

since H; € RV(y1-0) = RV(0) = SV, y1 being the index of regular variation of h;.
Similarly,

FERVO+P), peRV(—-1), P eRV(o-1).
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Consequently, Theorem can directly be applied to system (4.55), and hereby
to the original system through the transformation.
We conclude this part by the application of Theorem [4.11]to the widely studied
4th-order equation
X" =Pty Dy(x). (4.56)

The below mentioned observations can be easily extended to some more general
4th-order equations, but for comparison purposes we take the form (4.56), which
appears quite frequently in the literature. We assume 1 € RV(p) and u > 0.
This equation is equivalent to system (4.40), where we seta = f = A = 1 and
p(t) = qt) = @) = 1. Theny =6 =0 =0, Ly(t) = Ly(t) = Ly(t) = 1, and
A =1/(1 - p). The subhomogeneity assumption reads as p < 1. Further,

o+4 0+2+2u n_ @+3+u qp_ 0+1+3u
= , W= , V= ;o W= :
1-p 1-pu 1-p 1-p
A strongly decreasing solution x of (4.56) is a positive solution such that

1%

tlim x(t) = tlim x'(t) = tlim x'(t) = tlim x'"(t) = 0.

It is easy to see that in order to be fulfilled, it is sufficient to take ¢ < —4.
Alternatively, we can check how is verified (this is the only one among
conditions (#.49), @.50), (.51), (#.52), that can be satisfied in this situation). Thus,
under the assumptions 0 < u < 1 and ¢ < —4, Theorem assures that
possesses a strongly decreasing solution and for any such a solution x it holds

(1= 'Ly |

S ST a——

ast — oo.

A special case of (4.40) in the form

X =My, Y= Y, (4.57)

et) > 0,¢9(t) >0, A, u >0, Au < 1, was investigated in [62] by Jaro§ and Ku-
sano. More precisely, strongly monotone solutions were studied there. Since the
approach is based on similar ideas to those described in Subsections[4.3.2H4.3.4(ap-
proximation by means of a suitable integral asymptotic relation, a-priori bounds,
and the Schauder fixed point theorem) we present one selected result without
proof. It concerns existence and asymptotic behavior of mixed strongly mono-
tone solutions to (£.57), i.e., the positive solutions where one of the components is
strongly decreasing, while the other is strongly increasing.

Theorem 4.12. Suppose that ¢ € RV (0), P € RV (o). System (4.57) possesses reqularly
varying solutions (x, y) such that

x€RV(©), yeRV(v), v<1, w>1,
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if and only if
0+2+Ap+2)<0, uA+o0+2)+0+1>0,

in which case v and w are given by

_0+2+AMo+2) _wo+2)+0+2
ST 1-ap YT T 1A

and the asymptotic behavior of any such solution is governed by the formulas

POy |\ Ui \TT
)~ (v(v i - 1>V) v~ ([v<v "Dl -1)

ast — oo,

4.3.6 Overall structure of RV solutions to odd-order equations

In this section we present a description of overall structure of RV solutions to the
equation
Y+ p(H®@,(y) = 0, (4.58)

where0 <y <landp: [4,00) — (0, o) is a continuous function. Such a description
is the result of considerations made by Kusano and Manojlovi¢ in [89]. Some of the
ideas in the proofs are similar to those used e.g. in Subsection In particular,
here again an integral asymptotic relation is investigated, which can be seen as an
approximation of an integral form of equation {.58); this time the relation reads

as
t (f _ S)k—l 00 (1, _ S)Zn—k N
ye) ~ f k=D ). @n—p POV (@drds,

k is assumed to be even integer such that 2 < k < 2n. In addition, the tools
like the Schauder-Tychonoff fixed point theorem and the Karamata integration
theorem again play important roles in the proofs. In classifying eventually positive
solutions of (4.58), the well-known Kiguradze lemma is utilized.

Assume that p € RV(0). Denote with RS the set of all RV solutions of (4.58),
and define the subsets

RS(0) = RS NRV(o),
tr-RS(0) = RS N tr-RV (o),
ntr-RS(p) = RS N ntr-RV (o).

Using notation y,, = m(1-y)-2n-1,m € {0,1,2,...,2n}, to make the full analysis
we separately consider the case 0 < yop = —2n — 1 together with the central cases

0€ o, y1) U (y2,y3)U---U(Yau-2,V2u-1)

or
(S ()/1/ )/2) U ()/3/ ?/4) U---u (VZ?Z—l/ )/Zﬂ)/
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and the border cases

o€{yo,Y2,---,Y2u} Or 0 €{Y1,V3,...,YV2u-1}-
Denote

Q]-:f t21=1=)p(s) ds,
a

j =0,1,...,2n. The structure of RV solutions to equation (4.58) reads then as
follows:

(i) If 0 < yp, then

2n
RS = | Je-RS(j) U ﬂs(%’l;l).
=0

(ii) If 0 = yp and Qp < oo, then

2n
RS = |_Jtr-RS(j) U ntr-RS(0).
j=0
(iii) If 0 = yp and Qo = oo, then
2n
RS = U tr-RS(j).
j=1
(iv) If o =y, forsome m € {1,3,...,2n — 1} and Q,, < oo, then
2n
RS = U tr-RS(j).
j=m
(v) Ifo =y, forsomem € {1,3,...,2n — 1} and Q,, = oo, then

2n
RS = | ] tr-RS(j) Untr-RS(m).

j=m+1

(vi) If o € (Ym-1,ym) for some m € {2,4,...,2n — 2}, then

2n
RS = U tr-RS(j) U ntr-RS

j=m

o+2n+1
1-y ’

(vii) If 0 € (Vm, Ym+1) for some m € {0,2,...,2n — 2}, then

2n
RS = | ) tr-RS(j).

j=m+1
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(viii) If 0 = yy, for some m € {2,4,...,2n} and Q,, < oo, then

2n
RS = | ] tr-RS(j) U ntr-RS(m).

j=m

(ix) If 0 =y, forsome m € {2,4,...,2n — 2} and Q;, = oo, then

2n

RS = | ] tr-RS()).
j=m+1
(x) If 0 = y2, and Qo = o0, then
RS = 0.
(xi) If 0 > y2,, then
RS = 0.

A similar description was obtained for the equation

v = p()®, (y),

where 0 <y <landp: [a,00) — (0,0) is a continuous RV function, in the paper
[90] by Kusano and Manojlovié.
For further related information see Remark [4.5-(v).

43.7 %, solutions of n-th order equations

In this section we present a selected result from Evtukhov, Samoilenko [36] which
represents the approach of Evtukhov et al. to the investigation of Emden-Fowler
equation in the framework close to regular variation.

Consider the n-th order differential equation

y" = 5p(HEF(y), (4.59)

where 6 € {-1,1}, p : [a,w) — (0, ) is a continuous function, —c0 < a < w < oo,
and F : A7 — (0, o) is a continuous RV7 function with the index a # 1; here T is
zero or +o0o, and Ar is an one-sided neighborhood of T. By F € RVr(a) we mean
here that

' ) Lr(Au)
_ a
RO = L) it 0

foreach A > 0.
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A solution y of (¢.59) is called a P, (T, Ag) solution, —co < Ay < o0, if it is defined
on an interval [ty, w) C [4, w) and satisfies the conditions

y: [to,w) = Ar, }im yit)y =T, (4.60)
ither 0

lim () = {el T k=1,...,n),

—w or + oo

A0
50 YO By Ao (4.61)

Take anumber b € Arsuchthat|b| < 1ifT=0,b>1ifT=00,b< -1ifT = -0
and set Ar(b) = [b, T) if Ar is a left neighborhood of T, Ar(b) = (T, b] if At is a right
neighborhood of T. It follows from the definition that each #,(T, A) solution of
equation and all of its derivatives of order less than or equal to n are nonzero
on some interval [t;, w) C [tg, w); moreover, the first derivative of the solution is
positive on this interval if At is a left neighborhood of T and negative otherwise.
With regard for this fact and the choice of b, we introduce two numbers

if A is a left neighborhood of T

1
= b, =
to = sgn tH {_1 if At is a right neighborhood of T,

which determine the signs of the (T, Ap) solution and its first derivative, respec-
tively, on the interval [t, ). In view of {.60), we assume that y(t) € Ar(b) for
t € [t1, w). Further, we put

{t forw =
ty =

t—w forw < .

Set

t if w . _
) = f ¢lp(s) s, where K= |7 1, S pE)ds = o0
K w if [ Ip(s)ds < oo

Theorem 4.13. Let

AO:IR\{O L2 no2 1}.

/E/é/"'/n_ll
Then for the existence of P, (T, o) solutions of (4.59), it is necessary and, if the algebraic
equation

n—1 n—-1
A+o]Jai+o=a]]a (4.62)
=1 i=1

for o, where Aj = (n—i)Ag—(n—i—1),i=1,...,n—1, has no roots with zero real part,
sufficient that
im ta)]I(t) — (1 B a)Al
t-w  J(t) Ap—1

(4.63)
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and the following inequalities hold

n—-1
6‘Llo (Ao — n A; >0, yoylAl (/\0 - 1)tw > 0. (4.64)
i=1

Moreover, there exists an m-parameter family of such solutions if, among the roots of the
algebraic equation, there are m roots (with regard of multiplicities) whose real part has the
same sign as the function (1 — Ao)t,. Furthemore, each solution of this kind admits the
asymptotic representations

o= K%ﬂmwmﬂ—uwm>m%w (465)
(k)
yo ) Ak (1 +o0(1)), k= m=1, ast—> w. (4.66)

y(k—l)(t) (Ao — Dty

Proof. First we introduce the useful function
fB F(S)

" ds for
G(u) = —, B=
) \[BF(S) T forme

Note its properties needed in the sequel. Since G’(u) > 0 for u € Ar(b), we have
G : Ar(b) — Az(c), where

< Q.

[Cr Z) for AT(b) = [b/ T)
Az(c) = { B
(Z/ C] for AT(b) - (Tr b]/

0 forB=T
b ds
c—f (s) Z ={00 forB=b<T
—co forB=b>T,

and moreover,

lim  F(u) = —2
u—T,ueAr(b) 1—ausT, ueAr(b)

[ul'=% = 7, (4.67)
and there exists an inverse continuously differentiable increasing function G! :
Az(c) = Ar(b) such that
lim Gl(z)=T. (4.68)
z—Z,z€Az(c)
By virtue of properties of RV functions and the L'Hospital rule, we have the

relation
u

1' _ = — Q. 4.69
uTuthr®) GUOF@) (69
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Necessity. Let
12 n—2
Yo =R\{0,5.5 1)
and let y : [tp, w) = Ar, be an arbitrary #,(T, Ag) solution of equation (4.59). Then
there exists t; € [tp, w) such that y(t) € Ar(b), sgny(t) = po, and sgny’(t) = y, for
t € [t1, w). In addition, by [36, Lemma 2.1], we have the asymptotic relations

-1
y @) ~ [(Ag = Dt ] H Yy @), k=1,...,n-1, ast— o,
i=1 Aj

where A; #0,i =1,...,n — 1. They imply asymptotic representations {.66), and,
by virtue of (4.61), we have

Gmwﬂ §D(p) = GWWﬂW%WW”WW
(n=2)(t) AO (n=2)(¢) y(n—S)(t) y'(t)

Ao Apa ap 15 A
T (o-122 (do- Db, mrﬁﬁy”‘um—mwﬂ

v ~

y'(t)

40)

as t = w. Therefore by virtue of (4.59), we have (4.65). By integrating this
asymptotic relation from t; to ¢, t € (t;, w), and by taking into account conditions

and (4.67), we obtain the relation

-1

G(y(H) = 6(Ag — 1) Hlmn+mn

i=2

as t — w, which, together with (4.69), implies the representation

s -1 [ ] % J(HIL +o(1)] (4.70)
i=2

ast — w. It follows from (4.65) and (4.70) that

ORI 0
v~ a-a))

as t = w. Therefore, by virtue of for k =1, we have

(1+0(1))

A Ep)
(Ao—Dto, A -a)J(h)

as t — w. Consequently, condition (4.63) is satisfied, and relation (4.70) can be
represented in the form (4.65] - In addition, since sgn y(t) = o and sgny’(t) = W

fort € [t, w), it follows from (4.65) and (4.66) that inequalities (4.64) hold.

(1 +0(1))
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Sufficiency. Let conditions (4.63) and (4.64) be satisfied for some

AO:IR\{O 12 n-2 1},

15151-"/71_11
and let the algebraic equation (4.62) have no roots with zero real part. Let us show
that, in this case, (4¢.59) has P, (T, Ag) solutions that admit asymptotic representa-

tions (4.65) and (4.66). By applying the transformation

yO A
yk=D(f) (Ao — )t

F(y(®)) = q(H(1 + v1(7)), (1 + 041(1)), (4.71)

k=1,...,n-1,toequation (4.59), where

1 forw=o =
=BInlt,l, B = =06 =11 | =],
©=pinlt.l, B {lfmw<m/m> (o= 1) leﬂ)
we obtain the system of differential equations
, to]'(t) Ay Y(t, 1) )
v, = 1+v1)+ . 1+v)],
1 ﬁ(ﬂﬂ( D=1 v onam
, A A 2)
o, = B(1+ 0+ T+ 200 +0) - 1L+ 0, @7)

v = ,3[1 + U, — Ana 1+ v,)?

pte  gWEXY(t 01)
Ao—1 ’

+ .
AJ®) Yt 01) T (1 + op)
k=2,...,n—1,wheret = t(7) is the inverse function of 7 = fIn |, | and
Y(t,01) = G (q()(1 + v1)).

By virtue of conditions (4.63) and (4.64), lim;—,,, 4(t) = Z, and there exists a number
to € [a, ) such that q(t)(1 + v1) € Az(c) for t € [tp,w) and [v1| < 1/2. Therefore,
Y(t,v1) € Ar(b) for t € [ty, w) and, by virtue of (4.68),

}im Y(t,v1) = T uniformly with respect to v; € [-1/2,1/2].

This, together with (4.69), implies that

lim Xt o) =1-a
t—w F(Y(t, 01))G(Y(t,v1))

uniformly with respect to v; € [-1/2,1/2],i.e,,

Y(t, 7}1)

oy = 1~ @+ Rt onlGOY(E, o)
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and
F(Y(t,v1)) _ 1/(1 —a) + Ra(t, v1)

Y(t,01) F(Y(t,v1))

where the functions R;, i = 1, 2, satisfy the conditions

lim Ri(t,01) =0, i = 1,2, (4.73)
—w

uniformly with respect to v1 € [-1/2,1/2]. Therefore, by virtue of the form of the
function Y(t, v1), we have the representations

Y(t,v
s = [1=a+ R, o0l + o0,
F(Y(,01) _ 1/(1- ) + Ro(t, 1) @7
Y(t, v1) g(t)(1 +v1)
By taking into account these representations and by setting
(AO - 1)ta)]/(t)
h(t) = ———7)
O AT
we rewrite system in the form
v o1 [f1(z, 01, 02) + A1(1 = @)vz + Vi (01, 02)],
v}, :Aoﬁ— 1 [—Ak-10k + AgUks1 + Vi(or, )], k=2,...,n -1, (4.75)

—_

n—

v, :% fo(t,v1,...,0p-1) — v — (Ao + Do, + Vn(fc,vl,...,vn)),

Il
—_

where
f(T,v1,02) = A1[Rq(t, 01)(1 + 02) + (1 — ) = (1 = a)h()](1 + 1),
V1(v1,v2) = A1(1 = 0)v102,

2
Vi(0k, Uks1) = AkUkUks1 — Ak19g, k=2,...,n—1,

—_
—_

n—

F(601, e 0n1) = (1= (R 01) [ | —

1+
1 Ok

n-1 n-1
1 2 ‘
—_—— 2 P
Viu(t,01,...,0n) = —An-10;, + h(t) H 1+ v e = Uk]

Consider the resulting system on the set [7¢, o0) X RY 127 where 79 = fInlt,| and
]RT/2 = {(v1,...,0n) € R" : |u] < 1/2,k = 1,...,n}. Since ©/'(t) = B/t, > 0 for
t € [to, w), lim;—, T(t) = o0, and t = t(1) is the inverse function of 7 : [ty, w) —

[To, ®0), it follows that the right-hand sides of the system are continuous on the set

+ ((t) - 1)(1 -y vk],
1

P
I

P
I
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[0, 00) X R} 127 and, by virtue of the conditions of the theorem, lim;_,« f1(7, v1,02) =

0 uniformly with respect to (v1,v2) € IR% 127 lim; e f2(7,v1,...,04-1) = 0 uniformly

n-1

with respect to (vy, ..., 04-1) € R} Y

Vi(Ok, 01)
ol +ves1 =0 [Ok| + [O41]

Vault,vq,...,0

im n(% 01 ) =0
[or1++-+oal =0 [01] + -+ + [0y

uniformly with respect to T € [7g, ). In addition, by writing out the characteristic

equation det(C — gE) = 0 of the matrix C consisting of the coefficients vy, ..., v, in
square brackets in system (4.75), that is, the matrix

0 Al-a) 0 - 0 0
0 =-A, Ay - 0 0
c=| : : Do S
0 0 0 - —Apa  Aug
-1 -1 =1 - -1 —(Ag+1)

we obtain the algebraic equation (4.62), which, by the assumptions of the theorem,
has no roots with zero real part. We have thereby shown that system satisfies
all assumptions of [35, Theorem 2.2]. By this theorem, system has at least one
solution (v, ...,vy) : [11,0) = R", 11 > 19, that tends to zero as T — co. Moreover,
there exists an m-parameter family of such solutions if, among the roots of algebraic
equation (4.62), there are m roots whose signs coincide with that of (1 — Ag). By
virtue of the changes of variables and conditions and (4.63), to each
such solution of system (4.75), there corresponds a solution of differential equation
admitting asymptotic representations and (4.66). One can readily see
that this solution is a (T, A) solution of {.59). Since B = sgn t,, it follows that
equation has an m-parameter family of such solutions if, among the roots of
(4.62), there are m roots whose sign coincide with that of the function (1 — Ag)t, in
a left neighborhood of w. o

Remark 4.5. (i) Algebraic equation (4.62) necessarily has no solutions with zero
real part if |a| < 1.
(ii) Assume that F satisfies the condition

Lr(zg(z)) = Lr(z)[1 + 0(1)] asz— T (z € Ar) (4.76)
for every continuously differentiable function g : At — (0, o0) with the property

zg'(z)

1m =
z—T,zeAT g(Z)
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Compare @.76) with @.23), (4.95), and @.96). If y : [to, w) — Ar is a continuously

differentiable function such that

e _ £
v - &

where 9 is a nonzero real constant and & is a real function differentiable in some
left neighborhood of w and such that &’(t) # 0, then

Lr(y(1)) = Le(uol&(DIP)[1 + o(1)]
ast — w, since y(t) = z(t)g(z(t)), where z(t) = pol&(t)[°, and

_z28'(z) . z(B)g' ()
lim = lim
>TzeAr §(z) oo g(z(t))
_ o ZO(0)/2(8)
=lim ———————
o (y(1)/z(1))z' (1)
e [ EBY'®) _
=i (95’(t>y(t) =0
By virtue of representations {#.66), a £, (T, Ag) solution of (4.59) is a function
regularly varying (at w) of index 9 = A;/(Ag — 1). Therefore, if in Theorem we

additionally assume that F satisfies (4.76), then the above observations, together
with (4.65), imply the asymptotic representation

}im yit) =T, [ +0(1)] ast — w,

1
1-a

y(t) = uo (I+0(1))

n—1
1 A
[(/\() - 1)ta)]np(t) H ZLF (‘uoltwl)\oil)
i=1 !

as t — w. Therefore, in this case, the asymptotic formulas for £, (T, Ag) solutions
and their derivatives of order less than or equal to 7 —1 can be written out in closed
form.

(iii) Note that Evtukhov et al. in their previous papers related to the topic of
this chapter (some of them are mentioned above), additionally assumed that F is
a twice continuously differentiable function on the interval Ar and

uF"” (u)
im ——= =
u—T,ueAr F'(u)

However, in the result which we describe here, the approach was improved in
such a way that this condition can be omitted.

(iv) The paper [36] also deals with other types of solutions; in particular con-
ditions guaranteeing the existence in the classes (T, C), where { = +c0oor C = 1
orC=mn-2)/{n-1NorC=m-i—-1)/(n—-i)withi=2,3,...,n—1or C =0, are
established.

(v) In the paper [89] by Kusano and Manojlovi¢, comments and comparisons
of the results with ones in [36] are presented; note that a summary of the results
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from [89] is given in the previous section and concerns equation (4.58) which is a
special case of {#.59). The observations which we present next, are based on those
comments and somehow adapted. Although not specifically emphasized in [36]
— with some exceptions — Evtukhov and Samoilenko restricted their attention
on the equation with RV coefficient and focused their attention only on its RV
solutions. Namely, conditions imposed in [36] on the function p in (4.59) mean,
due to converse half of Karamata’s theorem, that p is of regular variation. That
fact is neither mentioned nor used by Evtukhov and Samoilenko. Moreover, while
they clearly emphasized that P (T, Ag) solutions with

12 n-2
Ao =R {0,—,—,..., 1},
0 \ >3

and Ap = oo are functions of regular variation (cf. (ii) of this remark), such an
assertion for P (T, (n—i—1)/(n—i)) solutions withi € {1,2, ..., n—1}is missing. Also,
by virtue of representations of such solutions obtained in [36] such a conclusion
is almost impossible to make. But, using the fact that p is of regular variation, it
becomes quite clear that each P (T, Ag) solution, with Ag # 1, is regularly varying,
while assuming that p is of rapid variation, (T, 1) solutions are rapidly varying.
Moreover, the converse is also true, due to the fact that p € RV(0). Indeed, denote
with P(T, Ap) the set of all P (T, Ag) solutions of (£58). Then, assuming that
y € RV(I), from equation we may conclude ¥ € RV(c + 9y), which by
application of the Karamata integration theorem implies that

0D e RY(@+ 8y +1) o Tim i oy 5y a1

y € (c+ 9+ ):>ti)rcr>1o y(”—l)(t)_0+ Y+
y" i

YD e RV(o+ 9y +2) = limt =0+ 9y +2.

t— o0 y(”_z)(t)
Therefore, condition (4.61)) in the definition of P« (T, Ag) solutions becomes

A0

o+dy+2 . Py
= lim

o+ +1  toc0 ¥

YD ()

(n—1) ¢ 2
= lim —[y (2)] ,
t—co y(")y(”_ )(t)

so that

GP(TU+87/+2
Yy

) o+dy+2
,m), 1.e., QS(S) QP(T, ),

o+dy+1

where RS(9) = RS N RV(I), RS being the set of all RV solutions of (¢.58). More
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specifically, it is not difficult to see that, in fact

m—1-29
RSE) =P (175 57)
if 9
forSe(—00,2n)\{0,1,...,2n—1},T:{O 9 <0
oo ifd>0
2n—1
RS(0) _so(o, ” )
2n+1-k
RS(k) —P(m,—zn_k ) fork=1{1,2,...,2n-1},

RS(2n) =P(c0, ),

which makes the results from the previous subsection closely connected with the
ones in this section and in [36].

4.3.8 Strongly monotone solutions of n-th order nonlinear systems

This subsection is based on the paper [124] by Matucci, Rehédk and on the paper
[146] by Rehak. Consider the nonlinear differential system

X = oa(t)Fi(x2),
x, = oax(t)Fa(x3),
: 4.77)
x;_l = 0ay—-1(£)Fp-1(xn),
Xy = 0an(H)Fu(x1),

n €N, n > 2, where F;,i = 1,...,n, are continuous functions defined on R with
uFi(u) > 0foru #0,a;,i=1,...,n, are positive continuous functions defined on
[T,00), T >0,and 6 € {-1,1}.
We assume
a; € RV(0;), 0;€R, i=1,...,n, (4.78)

and
Fi(l-)) e RV(wj), aj€(0,00), i=1,...,n, (4.79)

when studying the asymptotics of strongly increasing solutions, or (4.78) and
Fi(|- ) € RVo(ai), aj€(0,00), i=1,...,n. (4.80)

when the asymptotics of strongly decreasing solutions is considered. Further, in
both cases we assume that the indices a1, - - - , a,, satisfy

ay-ay < 1. (4.81)
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Recall that system satisfying condition (4.81) is called subhomogeneous (an
alternative terminology is sub-half-linear). The opposite (strict) inequality is called
superhomogeneity (or super-half-linearity).

The aim is to study asymptotic behavior of positive solutions to system (4.77),
i.e., solutions having all their components eventually positive. With 6 = 1, positive
solutions are eventually increasing, while with 6 = -1, positive solutions are
eventually decreasing. If one of the components in either case tends to a nonzero
real constant as the independent variable tends to infinity, then the asymptotic
behavior is clear from a certain point of view; asymptotic formulas can be easily
derived from the integral form of system (£.77). Therefore, we are interested in
the extreme cases where all the solution components tend to infinity or tend to
zero. Among other, we establish conditions guaranteeing that all solutions in these
classes are regularly varying and satisfy certain asymptotic formula.

Let S denote the set of all solutions of which are defined in a neigh-
borhood of infinity and do not eventually vanish — the so-called proper solutions
— and whose components are eventually positive. Due to the sign conditions
on the coefficients and on the nonlinearities in [.77), it is easy to see that if one
component of a solution of is eventually of one sign, then all its components
are eventually of one sign; we speak about nonoscillatory solutions. Further, any
nonoscillatory solution of has necessarily all components eventually mono-
tone. Denote by DS C S the subset of the solutions of which are in S, and
whose components are eventually decreasing; similarly, we denote by 7S C S the
subset of the solutions of which are in S, and whose components are even-
tually increasing. We will study the set DS under the condition 6 = -1, and the
set 7S under the condition 0 = 1; later we explain why this setting is natural and
nonrestrictive. First note thatif 6 = -1, then DS =S, and if §=1,then 7S =S. It
is clear that DS contains only those solutions whose components all tend to zero
or at least one component tends to a positive constant and the other ones to zero
(as t — o0), while 7S contains only those solutions whose components tend all to
infinity or at least one component tends to a positive constant and the other ones
to infinity (as t — c0). Hence we denote

SDS ={(x1,..., %) € DS : lim x(f) =0, i = 1,...,n},
which are the so-called strongly decreasing solutions, and
SIS ={(x1,...,xs) € IS: lim x;(f) = eo, i = 1,...,n},

which are the so-called strongly increasing solutions.

The condition 6 = 1resp. 6 = —1is somehow natural when studying the classes
ISresp. DS. In order to justify this assertion, we recall a standard classification of
nonoscillatory solutions. At the same time, thereby we put the presented results
into a broader context. Naito in [128, [129] considers the n-th order differential
equation

D(y)D(nt) -+ Dy1)x + Sp(H)Dp(x) = 0, (4.82)
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wheren >2,y1,...,yn,8 € (0,00),5 =10r b= ~-1,p(t) >0, and D(y)x = %((Dy(x)).
Equation (4.82) is a special case of system (4.77). Indeed, if F; = ®,,i=1,...,n,
then (4.77) can be equivalently written as

1 1
P o ( )"'D a (_)Dl (D xy = 6"an(H) Dy, (x1), (4.83)
a (Iln—l an_l ﬂl ag al

where D¢(y)x = %( f(H)®y(x)). Using the substitution x(t) = ®,,(x(t)) and notic-
ing that D;(1)(®,,(x)) = D(y1)x, equation reduces to {#.82) choosing a; =
1/vim,i=1,...,n=1 0, =B/y1,ai(t) =1,i=1,...,n—1,a,(t) = p(t),and 6 = -5".
Naito made a basic classification of positive solutions to (4.82) extending well
known results by Kiguradze and Chanturia [79] for the quasilinear equation

2 + Sp(t)yDg(x) = 0. (4.84)

Notice that reduces to (4.84) when y; = --- = y, = 1. The classification
of solutions x to (4.82) in Naito [128] is made according to the eventual signs of
D(yj)---D(y1)x(t), j = 0,...,n—1(with the operator being the identity when j = 0).
For solutions x of (4.82), the so-called Kiguradze class of degree k is denoted by K
and defined as

{Dm) - D(y1)x(t) > 0 for j=0,1,...,k—1,

(=1)/*D(y))---D(y1)x(t) >0 forj=k,...,n—1 (4.85)

for t large, where for k = 0 (resp. k = n), the first line (resp. the second line) in
(4.85) is omitted. It is not difficult to see that

xeKo & (x1,...,x,) € DS and x e K, & (x1,...,x,) € LS, (4.86)

where x1 = @), (x), x; = 0Dy, (x/_,),i =2,...,n. If we denote the set of all eventually
positive solutions of (¢.82) by K, then [128, Theorem 1.1] implies that

K=FKiUKzU---UK,_1 for 6 =1 and n even;
K=KoUFKoU---UK,_1 for 6 =1 and n odd;
K=KoUK,U---UK,» UK, ford=-1andneven;
K=FGUKzU---UK,_» UK, ford=-1and nodd.

(4.87)

In view of and the equality 6"a,(t) = —p(t), the relations in [.87) says that
the condition 6 = —1 and 6 = 1 are quite natural and nonrestrictive when studying,
respectively, positive decreasing and positive increasing solutions of (4.77).
The subscripts that indicate the components are always to be intended modulo
n and not bigger than #, that is
Uy = {uk ifl<k<mn, (4.88)

Uk—mn ifk>mn,
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where m € IN is such that 1 < k — mn < n. With this convention, which is used
throughout the paper, system takes the form

x; = oai(t)Fi(xiy1), i=1,...,m.

As usual, the slowly varying component in the representation of f € RV(9)
will be denoted by Ly, i.e., L¢(t) = f(t)/ t%; similarly for f € RV((9).

For sake of simplicity, we introduce here some constants that repeatedly appear
in what follows. We set

j-1
Ai,]-:Hozk, forl<i<j<i+n<2n
k=i

Itis easy tocheck thatA; ,+; = a1 ---ay,and A;; = 1foralli = 1,...,n. Weemphasize
that the convention (4.88) is used only for simple subscripts and not for double
ones. We indicate by (vy,...,v,) the unique solution of the linear system

vi—aiviii=0;+1, i=1,...,n, (4.89)

where 01,...,0, are given real numbers. Notice that the associated matrix is
nonsingular thanks to the subhomogeneity condition. Further, let (hy,...,h,) be
the unique solution of

vilhi = K"

i+17

i=1,...n. (4.90)

Notice that the subhomogeneity condition plays a key role in its unique solvability
again. A simple calculation shows that

vi= imﬂ Z(al+k+1)A”+k, i=1,...,n, 4.91)
and :
n-1 T=Aj i
:[H |vi+k|—Az>z'+k) L i=1,...,n
k=0
If we set

n—1 1=Aj p+i
Ajirj ’ .
Li(t) = []‘[ (Lase (DL, () ] , i=1,..,m, (4.92)

j=0
then (Ly,...,L,)(t) is the unique solution (up to asymptotic equivalence) to the
system of the relations

Li(t) ~ Lo, (OL] (OLE, (") ast— oo, i=1,...,1n (4.93)

Observe that if Ly, = --- = Lr, = 1, then (Ly,...,L,)(t) reduces to the unique
solution of the system

Li(t) = Lo ()L, (D), (4.94)
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i=1,...,n

In what follows, we assume an additional condition for the slowly varying
components of the nonlinearities F;. In particular, if F;,i = 1,...,n, satisfies (4.80),
we assume

Lr,(ug(u)) ~ Lp,(u) asu— 0+, i=1,...,n, (4.95)
for every g € SV, while if F;,i = 1,...,n, satisfies (4.79), we assume
Lr,(ug(u)) ~ Lp,(u) asu— oo, i=1,...,n, (4.96)

for every g € SV. Compare conditions (4.95) and {.96) with (.23) and (£.76).

Now we are ready to present the main results. The first theorem gives sufficient
conditions under which system possesses a SDS or SIS solution which is
regularly varying and we provide an exact asymptotic formula. We point out that
F; does not need to be monotone.

Theorem 4.14. Let (4.78)) hold.
(i) Assume 6 = -1, and @.95). Ifvi <0,i=1,...,n, then there exists

(xl, .. .,xn) e SDSN (R(V(Vl) XX R(V(Vn))

and
xi(t) ~ hit"iLi(t) ast— oo, i=1,...,n. (4.97)

(ii) Assume 6 = 1, @.79) and Ifvi>0,i=1,...,n, then there exists
(xX1,..., %) € SIS N (RV(v1) X --- X RV (1))

and holds.

The proof of the above theorem will be given later. As a corollary, we get
sufficient conditions for SDS # @ and SIS # 0.

In the second result, strengthening the assumptions on the nonlinearities F;,
we can show that

all SDS and SIS solutions are regularly varying.

Theorem 4.15. Let (4.78) hold and F; = @, witha; >0,i=1,...,n.
()If6=-landv; <0,i=1,...,n,then SDS # Qand forevery (x1,...,x,) € SDS,
it holds (x1,...,x,) € RV(v1) X -+ X RV (vy,). Further, (4.97) holds with L, = --- =
Lpn =1.
(ii)Ifo=1andv; >0,i=1,...,n, then SIS # 0 and for every (x1,...,x,) € SIS,
it holds (x1,...,%xn) € RV(v1) X -+ X RV (vy,). Further, (4.97) holds with L, = --- =
LFn =1.

An alternative expression of sufficient conditions in Theorem and Theo-
rem can be found in subsequent Lemma

In order to prove Theorem and Theorem we need some technical
lemmas. The first two lemmas analyze conditions (4.95), and show how
they lead to the unique solvability (up to asymptotic equivalence) in the class SV

of relation (4.93).
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Lemma 4.3. If (4.95)) holds, then
Le(EH() ~ Le () (4.98)

as t — oo for any v < 0 and h € 8V. Analogously, condition implies that (4.98)
holds as t — oo for any v > 0 and h € SV.

Proof. Taking the substitution u = t", relation (4.98) is transformed into
Lr(uh(u™)) ~ Lp,(u), u—0+. (4.99)

Since g(u) := h(u™) € RVy(0) = SV, condition (4.95) implies that (4.99) holds.

Similarly we can show that implies for any v > 0.
O

Lemma 4.4. Let v; < 0 fori =1,...,n. Then the system of asymptotic relations (4.93)
has a unique solution (up to asymptotic equivalence) belonging to the set SV, and this
solution is given by (4.92). Further, the system of asymptotic relations

- 1 =0
L) ~ fLaOLL (L, () ast— oo, i=1.n, (4100
i

has the unique solution (up to asymptotic equivalence)
Li(t) = hiLi(t),

where h; satisfies @.90), for all i = 1,...,n. Analogous statements hold under the
assumptionv; >0,i=1,...,n.

Proof. The first statement follows from the fact that system (4.93) can be written as

. . . a;
Li®) ~ Lo (OLe () (Lo (OLp, (9L () ~ - ~

n—1
) Ajisj Ajitn
~ T (B OLr )™ L o)
j=0
ast — oo, 1 =1,...,n, and taking into account that L;,,(f) = L;(t). The second
statement is immediate from the definition of ;, i = 1, ..., n. Indeed it results
3 n , 1 e
Li(t) ~ —= Ly, ()L (HLE, (%) = —La (HL]T (H)LF,(£7+1)

|Vi| i+1 |Vi| i+1

O

The following lemma provides some properties of the constants v;, i =1,...,n

defined by (4.89).
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Lemma 4.5. Let (p1,...,pn) be the unique solution of the system
+-+p, =1,
P P , (4.101)
alpl + pi+2 = pi+1(ai+l + 1)/ 1= 1/2/ Y 2/ n.
Then

1+ X0 Ao
pi = . Licis1 Apnsi >0, i=1,...,n, (4.102)
1+ Y (Akker + Akgsa + -+ A frn—1)

and the following identity holds

(O1p1+---+0npn+l)
1-¢& !

where & is defined by p1 + -+ + pu—2 + pu—1(an—1 + 1) and satisfies & < 1. Further, if
Lp,=---=Lf, =1, then

1
-2

Ly(8) -+~ Lu(t) = (LhI(®) -+~ Lh' (1) ™ (4.104)

Proof. Itiseasy to check that (p1, ..., pn) givenby (4.102) solves (4.101). Positivity of
pi is clear and the uniqueness can readily be seen when writing (4.101)) in a matrix

form. The inequality £ < 1 is equivalent to the subhomogeneity assumption. A
series of routine and tedious computations (where we can expand the explicit
expressions for v; and p;, and compare corresponding summands in the resulting

formulas) shows that identities (4.103) and (4.104) hold. m|
Define
Ai]' fOI‘lSi<jS1”l,
Bijj =1 j-14n L
SOOI ek forl<j<i<j+n-1<2n-1.

It is easy to verify that the following relations hold

Bij=a1---an,
B Bji = ai---ay = Bjj,
BiiBj¢ = Big,

where i, j, ¢ € {1,...,n}, and for the last equality we assumei < j<for{ <i< jor
j <€ <i. Now let
Gi,j =Vi— Bi,]'V]‘, i,j el,..., n (4105)

In the subsequent lemmas we derive several properties of the constants ¢; j, i, j €
1,...,n. Their proofs are rather technical and since they do not directly concern
regular variation we omit them. For details see [124].

Lemma 4.6. Let v; < 0 fori =1,...,n. Then g;j i,j € 1,...,n, satisfy the following
relations:
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(i) 0gii<0fori=1,...,n.
(i1) If there existi,j € {1,...,n}, i # j, such that g;; > 0, then g;; < 0.
(iii) If there exist i,j,€ € {1,...,n}, with i < j < {, such that ;; < 0 and g;¢ < 0, then
Oi¢ < 0.
(iv) If there exist i, j,€ € {1,...,n}, with j < i < ¢, such that g;j < 0 and g > O, then
Oir < 0.

Lemmad.7. Lety;j i,j=1,...,n,n =2, be any numbers which obey the rules (i)-(iv) in
Lemma Then the matrix (y; j)1<ij<n has at least one row whose elements are negative.

The previous two lemmas play an important role in the proof of the following
statement which, among other, enables us to find an alternative expression for
sufficient conditions in Theorem (.14 and Theorem [4.15

Lemma 4.8. The following equivalence holds: v; < 0 (> 0) foralli=1,...,nif and only
if oim <0(>0)foralli=1,...,nand somem € {1,...,n}.

Lemma 4.9. The numbers g;;, i,j =1,...,n, defined by (4.105), satisfy the relations

{Qj+k—l,j = Ojrk-1 + 1+ QjpaOjarjy k=1,...,n=1, (4.106)

Oj+n-1,j = Oj+n-1 + 1,
j=1,...,n

Now we are ready to prove the main theorems.

Proof of Theorem[£.14} (i) First we prove that has at least one solution x =
(x1,...,x,) € SDS. Since is valid, for every i = 1,...,n there exists F; €
C(R) N RV (), nondecreasing, such that F;(u) ~ Fi(u) as u — 0. Thus there exists
ug > 0 such that

L R <R < BE@w), Vuelouli=1,...n. (4.107)

V2
Notice that F; satisfies conditions (4.92) and (4.94) if F; does, fori = 1,...,n. Let
(k1, ..., ky), be the unique solution of the linear system k; — ajki 1 = 1. System
reduces to this if g; = 0 foralli = 1,---,n, and therefore, from (4.91), it results
ki > 0 for all i. Let Li(t) = h;Li(t), i = 1,...,n, see Lemma Now, taking into
account that v; < 0,7 = 1,...,n, properties of RV functions, assumptions
and imply that ¢ sufficiently large exists such that

ML (HE < ug, (4.108)
Lp 25 L (DF71) < V2 Lp (#41), (4.109)
N 1
ki1 . Vig = (tVi+
L 275 Liyy (Dt 1)2%%(1& 1) (4.110)
1 . 1 . s 457
75 1O = 1 L OLL OLe () < VL), (4.111)
1 - . 5
%tVfLi(t) < |vil f s Li(s)ds < V21" Li(t), (4.112)
t
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forallt € [ty,00),andi=1,...,n. Let Q C (C[tg, o))" be the set

Q={(x1,...,x,) : x; € C[tg, ),
275D < xi(h) < 2NLiE, i=1,...,n), (4.113)

and let T : QO — (C[tp, ©0))" be the operator defined by
Tx = (T1x, Toxs, ..., Tyx1),

with .
(Tixi+l)(t):f ai(s)Fi(xi+1(s))ds, i=1,...,n.
t

First of all notice that T is well defined in Q. Indeed, for all x € QQ we have
0 < ai(OFi(xin (1) < V2ais)Fi(xin (1) < V2ai(s)Fi(@5 Ly (b)),

where we used #.108) and (#.107). Since F; € RVy(a;) and a; € RV(0;), the last
term in the above inequality belongs to the class RV(o; + ajviy1) = RV (vi — 1), see
(4.89), with v; < 0, and therefore it is integrable on [t, o). In particular, taking into

account (4.109), (4.111), and (4.112), for every t > ty it holds
(T < V2 [ aOF @ Lo (97 ds
t
= zafki+1+% f SUiLui(s)i;?il(s)saiVmLpi(zki+1li+l(s)sw+1) ds
t
= ki3 f $" Lo ()L (5)Lp (21 Lisa (5)s¥1) ds
t
< oki~z I §" L, (5)LY7 (s)Lp (s1) ds
< 2ki~i | f s Li(s) ds < 28 iLi(t).
t
Analogously, from (4.110), (4.111), and (4.112), for every t > t; it holds
T2 27 [ a@F@ L) ds
t
_ —ki+3 ~ vi—1 7 i —kis1 Vi
= 27fi*s f s Lay(s)L;} 1 (S)LE, (27 Lisa (s)s"+') ds
t
> o kit f s""_lLai(s)lﬁl(s)Lpi(sV"“)ds
t

> 2Kty |w|f s'71Li(s) ds > 279 Li(h).
t
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Thus T maps Q into itself. In order to apply the Schauder-Tychonoff fixed point
theorem, we have to show that T is completely continuous. Since T(Q)) C Q,
functions in T(Q)) are equibounded on [ty, o0); further, the inequality

0> (Tixis1) (£) > = V2ai()Ei(25 Lipq (H)F+1)

which is valid for t > to, i = 1,...,n, and for every (x1,...,x;) € Q, ensure that
functions in T((2) are equicontinuous. The relative compactness of T(Q2) follows
from the Ascoli-Arzela theorem. To prove the continuity of T we have to show that
for any sequence x™ = (x",...,xy) in Q2 which converges to x = (¥, ...,%,) € Qas
m — oo uniformly on any compact subset of [to, o), it holds (Tx")(t) — (TX)(t) as
m — oo uniformly on compact subset of [t, o). But this is a direct consequence of
the Lebesgue dominated convergence theorem. Since all the assumptions of the
Schauder-Tychonoff fixed point theorem are fulfilled, we obtain the existence of
at least one fixed point x € Q of the operator T. This fixed point x = (x1,...,x5)
is a positive solution of (4.77), and from the definition of the set Q it follows that
xi(t) > 0ast > o0,i=1,...,n,ie.,x € SDS.

Now we prove thatx; € RV(v;), i = 1,...,n. Since x € QQ, we have x;(t) < t'iL;(t)
ast — o0,i=1,...,n. Taking into account that L;j(At)/L;(f) — 1 as t — oo for every
A>0,i=1,...,n,wecan find m;, M; € (0,00),i =1,...,n, such that

xi(At)

m; < 1i(t) £ M;, where 7(f) := @)
1

i=1,...,n, (4.114)

for t > t(, and so

liminf 7;(t) =: A, € (0,00),  limsup 7(t) =: A; € (0, c0).

t—o0

From the uniform convergence theorem for SV functions, we get

Lr;(xix1(AD) 1‘ _
Lr,(xi+1(t))

Lr(tia(®xisa () 1'
LF,(xi41(t)

Lr(&xina(8)

LF,(xis1(t)

1' =0(1)
&e[m;,M;]
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ast — oo. Thus,

At Aai(ADXY (Af)  Lp(x:
A; > liminf ,( ) = liminf i )Jilfrl( ) ) Lr,(xi+1(A1))

Ax! (AP %
> Al*oi (lm f”l(At)) >A1+f’f(1iminf—i”( ))
t—oo Xip1(t) f—o0 l+1(t)

= A9 [iminf /\al+1(/\t)xal+1 (At) LFZ+1(xz+2(At))
- Xit1
t—e0 az+1(t)x (t) Lg,,, (xis2(8))

Ay
> /\1+a,-+a1-(1+(7i+1) liminf /\xi+2(At) !
- feo xi+2(t)

(4.115)

>...

Ai,i+n
> A0+ A1 (140141)+ A 142 (14 0i32) 4+ Ajin-1 (14 014-1) (h?‘_l)glf Tin (t))

_ qvi(l-A;; Ajj
=A i( 1,1+n)éi ”“1’

where we used (4.91). Realizing now that A; i, = a1 --- @, < 1, we obtain A, > A"
Similarly we get Aj < AV, This implies that there exists the limit lim;_,o, x(At)/x(t)
and it is equal to A"i. Since A was arbitrary, we get x; € RV(v;),i=1,...,n
Finally, we establish asymptotic formula (#.97). We have x;(f) = t"L;(t), i =
1,...,n, where L; € SV has to be determined. Then, taking into account (4.89),

(4.95), and (L.8), it results
FL0 = [ @R Ga©) ds= [ L, O @) ds
t t
:f s" 1L, (s)L“‘l(s )L, (s"*'Li11(s)) ds
t

< [ e )
t

i+1

1
~ |_tVlLa, (t)Lal (t)LF,» (tw+1)

ast — o0,i=1,...,n. Hence, Li(t) ~ Li(t) = hiL;i(t),i = 1,...,n, see Lemma and

(4.97) follows.

The proof of (ii) is similar and hence omitted. Just note that relation (1.9) finds
its extensive application here. m|

The following lemma, which follows the well known generalized AM-GM
inequality, is needed to prove Theorem .15

Lemma 4.10. Let uq,...,u, >0and py,...,pn = 0withpy +---+py = 1. Then

n n
Y wul (4.116)
i=1 =1
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Proof of Theorem (i) Take any (x1,...,x,) € SDS, which indeed exists by The-
orem From {@.77), x; satisfies the integral equation

xi(t) = j; a;(s)x;7 (s)ds, (4.117)
i=1,...,n. From Lemma 4.8} there exists m € {1,2,...,n} such that g;,, < 0 for all

i =1,...,n, where the constants g; ; are defined by (4.105) and satisfy also (4.106).
Iterating (4.117), starting from i = m we get

xm(t) = I am(sl)xi"jrl(sl)dsl

f am(Sl)( f am+1(52)x‘,1n"j:21d82) dsy
t S1
"=f am(sl)(f p41(52) X

t S1

00 Qp4n-2 Xm+1 Am
X ( .. (f Elm_;_n_l(sn)x?nnrigrl (sn) dsn) - ) dSz) dsq
Sp-1

Since Xp4n = X is eventually decreasing, X,.4u(sy) < xm(t) for s, > t, t being
sufficiently large. Further, a,,4,—1(t) = tomn-1L, (t), With 0y4n-1 = Oman—1,m —1 <
-1, see and Lemma[4.8] Thus we can apply obtaining the existence of
a positive constant k;,, such that

(o]
f Bt ST 5) s < K (So)S7 L (Sct)
Sn—1

We can proceed in a similar way for all the iterated integrals; note that (4.106) and
Lemma {4.8 assure that we can apply (1.8) at each step. We obtain that k € (0, o)
exists such that for f large

Xon(£) < X1 (1)

00 00 Qpn-2 \Am
X f S‘;”’Lam (Sl) (. .o (f SZWI-#n_l Lum+n71 (Sﬂ) dsﬂ] . e ) dS]
t s

711
< kx:z""””" Lam (t)LAm,m+1 (t) . LAnz,m+n—1 (t)tv"’(l_Am’m+”)

Am+1 Am+n—1

where we used the equality v, (1 — Apmen) = om + 1 + A1 (Omer + 1) + - +
Ammin-1(Omin—1 + 1), see @91). Since Apmsn = a1---ay < 1, from with
Lp, =--- =L, =1, there exists d,;, € (0, o) such that x,(t) < d,,t""L,,(t) for large ¢.

Now we show that x;(t) < d;t"/L;(t) for large t and foralli =1, ..., n, withd; > 0.
From the estimate for x,; = x;,,1,, we can now easily get the estimation for x,,1,,—1.

Recall that and (#.94) hold. From (@.117) and (1.8), in view of v,, < 0, we

1
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have
xm+n—1(t) = f Am+n-1 (S)x(r);lmw_l (S) ds
t

00
< d%mﬂl—l f gOm+n-1 FAmen-1Vm LﬂnH—n—l (S)L%m*n*l (S) ds
t

< dm+n—1 1], (t)Lfan_l (t) = dm+n—1 men=1 Lm+n—1 (t)

Am+n—1
for large t, where d,,,.,—1 is a suitable positive constant. Repeating this process, and
taking into account the modulo n convention, it results x;(t) < d;t"iL;(t) for large t
and foralli=1,...,n.

Next we derive lower estimates for x;’s. For brevity we sometimes omit argu-
ments. Again take any (xy,...,x,) € SDS. Then

n n
’ / [27]
—(x1xp - xp)" = — Z XiXiel * Xign-1 = Z AiX, 1 Xi+1 """ Xitn—-1
i:l l=1
n n
a;
= ZHi' where H; = az-xl.il H Xk.
i=1 k=1;k+i

Consider the (positive) numbers py, ..., p, defined in Lemma System (4.101))
is equivalent to the system

prt-+pn=1,
pr+p3+- +pp1+pu(an+1) =pr(ar +1) +p3+---+py,
prlar + 1) +ps+-+py=pr+paAaa+ 1) +ps+---+py, (4.118)

p1+ -+ pns + pn2(@n2+1) +py =p1+ -+ pa2 + pu-1(an-1 + 1)

From Lemma we get that

n n
—(x1x2 - xp) = ZHZ‘ > HH?I
i=1 i=1

_ arlhalfzfz . ‘aznxl;2+p3+"'+Pn—1+Pn(an+l)xgl(a1+1)+p3+"'+PnX
X xpl+p2+"'+pn—2(an—2+l)+Pn xpl+P2+"’+Pn72+pn—1(an—1+1)

n—1 n

Observe that except of the first equality all sides of the equalities in (4.118) are
mutually equal and denote any of them by &; this is the same & as in Lemma
Then, from the last estimate, we get

— () z e ) (4119)
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By Lemma we have & < 1. Dividing @.119) by (x; - - - x,,)° and integrating from
t to o0, we obtain

@1t - ()7 2 (1= €) ftm a)'(s) -~ aj"(s) ds. (4.120)

From the upper estimates for x;’s we have

n
xX1(8) -+ X (t) < Iyxi()tErete Ve H Li(t) (4.121)
k=1;k#i

for large t, where i € {1,...,n} and [; is some positive number. Taking into account
that )7, oip; < —1, see (£.103), from (L.8) there exists I, € (0, ) such that

f d'(s) - -al) (s)ds > Lt eI ) L [P ) (4.122)
t

for large t. Combining (4.120), (4.121), and (4.122), we find ¢; € (0, o) such that
xi(t) = cit"'Li(t)

for large t, where

1
p1 Pn -2
1 n . Lo b
171-:1 (o1p1+ - Onpn +1) = Z 1 and L,-:(ln—)
- ¢ k=Tiki k=10 L

Identities and now imply 7; = v; and L;(t) = Li(t), i = 1,...,n. Thus
we have proved x;(t) < t'iLi(t) ast — oo, i = 1,...,n. This implies (4.114). The
property x; € RV(v;), i = 1,...,n, and asymptotic formula follow by the
same arguments as those used in the second part of the proof of Theorem [4.14}(i).

(ii) The proof of this statement can be found in [146], and uses similar arguments
as part (i). Note that certain additional condition is assumed in [146]. Butin view of
Lemma[4.8) under the assumptions of Theorem .15} (ii), that additional condition
is automatically satisfied. a

Theorem can be applied, for instance, to the equations
2 = (=1)"p(t)Dy(x), (4.123)

and
2 = p(t)Dy(x), (4.124)
where p(t) = t°L,(t), L, € SV and 0 < § < 1, leading to the following results.

(a) If o + n < 0, then ([@.123) possesses a solution x such that lim;_,. x(t) = 0,
i=0,...,n -1, and for any such a solution it holds

(4.125)

XER(V(Q+n)

1-p
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with
_ - 1-8
1=B(4) ~ totn — o0
xXTP(E) ~ 1L (8) ]|':1| o= A-pG-1) as t )

(b) If o+ 1 + (n — 1) > 0, then equation (4.124) possesses a solution x such that
limy e x(t) = 00,i=1,...,n—1, and for any such a solution (4.125) holds with

1- +1 s 1_5
x1P(t) ~ 2 Lp(t)g0+n—(l—ﬁ)(j—l) ast — oo.

The theorems of this subsection can clearly be applied to the equation of the
form (4.82), or even to the more general equation

Dy, (yn)Dg,(Yn-1) -+ - Dy, (y1)x + op(5)Pp(x) = 0 (4.126)

with D(y)x = %( f(H)®y(x)). As a special case of (4.126), we get the (above dis-
cussed) equation
(r(HPa(x"))" = p(t)Pp(x). (4.127)

We point out that equations of this form (but this holds also for some higher order
equations or for second order systems), are often studied in separate settings
depending on whether the integral fa “ sy ds diverges or not. The results of
this subsection are in such a form that this distinction is not necessary and all
possible combinations which may occur in second order systems or higher order
equations are included in our setting.

In Subsection[5.1.2lwe indicate another application of Theorem[4.14} it concerns
a scalar second order equation with generalized ®-Laplacian.
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Chapter

Some other nonlinear differential
equations

5.1 Equations with a general ®-Laplacian

As a typical prototype of the objects from the title of this section, let us consider
the second order equation

(r(OGY))" = p(OF(Y), (5.1)

where r > 0,p are continuous functions on [a, ), G is an increasing odd home-
omorphism defined on an open interval (—p,p), 0 < p < o0, and ImG = (-0,0),
0 < 0 £ o, Fis a real continuous function on R such that uF(u) > 0 for u # 0.

In fact, Emden-Fowler type equations (which are studied in the previous chap-
ter) are sometimes in so general form that include also equation (5.I). For instance,
the general setting of Subsection[4.3.8Jallows us to apply (after a modification) The-
orem [4.14]to equation (5.1). This fact will be illustrated in Subsection where
we examine certain boundary value problem involving equation (5.1).

Note that typically — in considerations within the theory in the framework of
regular variation — it is assumed that G™! or a generalized inverse of G is regularly
varying. Examples satisfying these assumptions are the classical p-Laplacian

G(u) = Dy(u) = |[ul* sgnu € RV (a) N RVo()
(even this function is trivially regularly varying), or
G(u) = Dy(u) Inul € RV(a) N RVo(a),

or
G(u) = u®(A + BuP) € RV(5 + By) N RV(5)

165
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if 6,8,y > 0. Other, more special and typical, prototypes are G(u) = ®c(u) or
G(u) = Or(u1), where

u u
Dc(u) = and Pr(u) = ,
Y e e

these operators arise in studying radially symmetric solutions of partial differ-
ential equations with the mean curvature operator and the relativity operator,
respectively. Note that @El = dp, (I)I‘{1 = Oc, and ¢, Dr € RVy(1).

Recall that the inverse of an increasing regularly varying function of index
9 > 0isin RV(1/9). A similar statement can be proved for functions in RV((9).

In some considerations, thanks to the theorem about asymptotic inversions of
RV functions, the assumption on the monotonicity of G can be omitted; one can
then work, for instance, with the generalized inverse instead of the inverse.

In working with some forms of G, like, for instance, G(x) = x In x|, the Lambert
W function may play an important role. The inverse of G is in this case G™(x) =
e ™. Note that W cannot be expressed in terms of elementary functions.

5.1.1 A boundary value problem on a half-line

The results of this subsection are based on the paper [27] by Dosld, Marini, and
Matucci. We are interested in solving the BVP on the whole half-line associated to
(G.1), (t) > 0, p(t) being defined for t € [0, =), especially when the weight p changes
its sign, that is, if there exist ¢1,t, > 0 satisfying p(t1)p(t2) < 0. In addition to the
hypotheses at (5.I), it is assumed that F is nondecreasing and liminf;_, r(t) > 0.
The boundary conditions read as

y0)=¢c>0, yt)>0, 0< tlim y(t) < oo, tlim y'(t) = 0. (5.2)

Let p,p-, denote respectively the positive and the negative part of p. Clearly,

p(t) = p+(t) = p-(t).
All the cases when

the inverse G™! of G is RV, or RPV, or SV,

are discussed in [27]. For illustration, we present one selected result and the short-
ened proof. A crucial role in all the proofs is played by the Schauder-Tychonoff
fixed point theorem. Very helpful are also various facts which are consequences
of simple properties of RV and RPYV functions like, for instance, g(u) < Mu*~¢,
0 <e<a, org(Au) < MA%g(u), A € (0,1], on (0, T] for some M > 0, provided
g€ RVo(a), a >0, etc.

Theorem 5.1. Let G~ € RVy(a) with a > 0, and assume that

Flu) _

u—0+ yl/p =0, (53)
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and for some ¢ € (0, — B),

[ oo

fo‘m (% j;op_(r)df)a gds < o0,

Then the boundary value problem (5.1)), is solvable for any small positive c. Moreover,
every solution is of bounded variation on [0, co).

(5.4)

Proof. Choose u > 0 such that

1 « 1 «
T, = umax {ntlz%x(@ﬁ p+(s) ds),r?zi(?(@jt‘ p-(s) ds)} < 0.

Since G™! € RVy(a), having a fixed ¢ < & — B, a positive constant M exists such that
G Mu) < Mu*¢for0<u< Ty. Choose ¢ > 0 sufficiently small such that F(2c) < p.
Let Q) be the subset of the Fréchet space C[0, o) given by

Q-= {MEC[0,00):ESu(t) S2c}

and define in () the operator 7~ as follows

t 00 o
T@)(#) = c+ fo G (%( f p-(OF(u(v)) d — f m)F(u(T»dT)).

By the previous considerations, 7 is well defined. It can be shown that 7 (Q) C Q,
7 (Q) is relative compact, and 7" is continuous. Thus we can apply the Schauder-
Tychonoff fixed point theorem, which guarantees the existence of y € () such that
y(t) = T (y)(t), ie. yis a solutions of (5.1). Clearly,

1 (o] (o)
y()=G" (@( ft P (SE(y(s)) ds - ft p+<s>F<y<s>>ds))

and so

FQ2c) [
r(t) Ji

1(FQc) [~
-G 1(
r(t) Ji
Since 1/r(t) is bounded as t — oo, we have lim;. y'(f) = 0 and, from (5.4),

y’ € L'[0, 00). Thus, y is of bounded variation on [0, c0) and the limit lim;_,o y(£) is
finite. Since y belongs to (), the assertion follows. m|

p(s) ds) <y()<G! ( p—(s) ds).

Note that condition is satisfied, for instance, if F € RV((y), where y > 1/B.
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5.1.2 Regularly varying solutions

Theorem can be modified, for instance, for a system of the form
x; = a;i(t)Gi(bi(t), xit1),

i=1,...,n, where x,,1 means x1, a;, b; are regularly varying, and G; are regularly
varying with respect to both variables. Such a modification enables us to include
equations like (5.1), where 7, p are positive continuous functions on [a, ) with r €
RV (0),p € RV(0), and F, G are continuous functions on R with uF(u) > 0, uG(u) > 0
foru # 0, |G(| - )] € RVo(a), IF(| - DI € RVo(B), a, B € (0,), G being increasing in
a neighborhood of zero. In fact, the theorem about asymptotic inversions of RV

allows us to omit the assumption on the monotonicity of G, but for simplicity we
assume it. Equation (5.1) can be written as

where G! stand for the inverse of G; it holds G™! € RV(1/a). Assume that
Lr(ug()) ~ Le(u),  Lg-1(ug()) ~ Lg-1(u) asu — O+ (5.5)
for every g € SVy. The subhomogeneity condition reads as a > g. If
o+1< min{a—a,é(a—a)},

then (5.1)) possesses an eventually positive decreasing solution x such that

lim x(f) = lim r())G(x'(#)) = 0, (5.6)
x € RV(v), and
La7 (tg+1+ﬁv—c)LF(tV)L (t)
x(l) ~ : = P (57)

—~(o+1+pv)(-v)* L(f)

ast — oo, where v = (@ — o + ¢+ 1)/(a — B). Note that also x’(t) tends to zero as
t — oo. For completeness we add that if, in addition, F = ®g and G = @, then
every solution x of with then satisfies x € RV(v) and (5.7). We already
know that other examples of G, different from the classical p-Laplacian case, are
Gc(u) and Ggr(u), the curvature operator and the relativity operator, respectively, both
arein RVy(1), and are mutually inverse. Note that condition is clearly fulfilled
for G¢, Gg.
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5.2 Partial differential equations

5.2.1 Radial RV solutions of partial differential systems

It is clear that many of the results in this text (that are established for ordinary
differential equations) give useful information about asymptotic form of radial
solutions to associated partial differential equations. For example, let us show
how Theorem can be applied to the partial differential system

{div(lqull“‘Wu) = @(lIzIl)lv* 1o, (5.8)

div (IVollF~1V0) = Pzl tu

in an exterior domain in RN, N > 2, where ¢(t) = t°L;(t) € RV(5), ¢(t) = L (t) €
RV (). If we assume
v=ABla+1+06)+AB+1+p) <0,
@:=ANaB+1+p)+pua+1+0)) <0,
N <min{l - (#-1)a,1- (@ - 1)B},

then the existence of a positive (strongly) decreasing radial solution of (5.8) is
guaranteed, and any such a solution (u, v) satisfies

_ u(z) o o\ P
lim A :(Kl Za) '
lzli=e P LEA (2D LA (121])

2 ¢
u\apA

- _ v(z) - (szf) ,

V= (2@ L™ (2ILG 2l

where K} = — (17 (1 =P)a—N+ 1)%)_1 Ky = — (d) (1-@)p-N+ 1)%)_1. Indeed, a

radial function (u(z), v(z)) is a solution of inX, ={zeRN:|z| >a}ifand only
if (x(t), y(1)), t = |Izll, given by (x(l|zll), y(llzll)) = (u(z), v(z)), satisfies the ordinary
differential system

{(tN—l@am)’ = IR, (1), 59)

(N1 Dp(y)) = NTE(D(x),

t > a. System has the same structure as 40), with p(t) = q(t) = N7},
o) = tN1p), Y(t) = tN1P(t). Thusy =6 =N-1,L,() =L(t) =1, 0 =N -1+,
0=N-1+0, Ly(t) = Le(t), Ly(t) = Ly(t). Applying Theoremto system (5.9)
and going back to the original variables we get the result.

Note thatif Theorem[.TTjwas obtained just for system withp(t) = q(f) =1,
then, after a suitable transformation of the independent variable, only partial
systems of the form (5.8) satisfying the conditions @ = f and a +1 > N would
be detectable. Arbitrariness of p,q and of the convergence or divergence of the
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integrals in (4.41) enables us to omit these restrictions. Moreover, our general
setting allows us to consider even more general partial differential systems where
the leading coefficients are formed by elliptic matrices of certain special forms.

Similarly we can apply Theorem[4.14Jand Theorem[4.I5|when studying positive
radial solutions to partial differential systems of the form

div(IVur M ~1Vuy) = @1(l1zI)Gluo),

div(|[Vi |11 Vuaz) = ¢2(EDGa), (5.10)

div(IVigll Vi) - = @i(lIzING(ur).

For some other information concerning related partial differential systems see
e.g. [22,24] and the references in [24,[127,[162]]. Recall that systems similar to (5.8)
are in the literature sometimes called as of Lane-Emden type. For information about
applications of such systems see e.g. [169].

5.2.2 Almost radial symmetry

In this subsection we give another demonstration how RV functions can appear
in the qualitative theory of differential equations. This time we consider the partial
differential equation

Au = (p(lxl)uA, x € R"and |x| large, (5.11)

where n > 3 is an integer, A € (1, o) and, for some ¢ty > 0, ¢ : [tp,0) — (0, 0) is a
continuous function.

We present one commented result from Taliaferro [159] without a proof, and
the interesting fact is to observe how the subject of regular variation is related to
the conditions on ¢ in the theorem. It is worthy of note — as claimed by Taliaferro
in the paper — that is was Omey who pointed him out this fact.

We are interested in whether all positive solutions of are almost radial
when [x| is large, i.e.,

u(x)

a(]xl)

where 7i(t) is the average of u on the sphere |x| = t. Assume that

—1 aslx|— oo,

foo s%p(s)ds < oo (5.12)

to
for some o > 1 and note also other (mutually exclusive) cases are discussed in
[159].
Theorem 5.2. Suppose that u(x) is a positive solution of (5.11). Assume that

P(t)

M_)l ast — oo (5.13)
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for some continuously differentiable function 1 : [tg, c0) — (0, c0) such that

t2”_2¢(t) is monotone on [tg, ), (5.14)
and )
lim ( ! ] foo Vi(s)ds = M for some M € RU {+}. (5.15)
el Ji
Then )
u(x . _ _
lxllir;o T 1 and |9}|11>r;o[u(x) —a(lx])] = 0.

Moreover,1 < M < (a + 1)/(a — 1) and either

lim u(x)(% f:o Mds)m _ (1 N (n—=2)(A —21)(M_ ]))m ’

[x| =00

or
u(x) =c+o(l) aslx| — oo,
or
c+o(1)
u(x) = as |x| — oo,
W =5 sk

where c is some positive constant.

Remark 5.1. Let ¢ : [tp,0) — (0, 00) be a continuously differentiable function.
Using methods of the subject of regular variation one can easily show that

satisfies both ft;’" V¥ (5) ds < oo and (5.15) with M = 1 if and only if

t h/
B0 = ko) exp {—2 [ =52 ds}

for t > tg for some continuously differentiable function £ : [tp, o) — (0, 0) such
that #’(t) — 0 as t — oo. In this case

) 00 t 1
ft VY(s)ds = (jt; w(s)ds)exp {—fto @ds)

fort > tg and for each € IR there exists t; > to such that w(t)tﬁ is strictly decreasing
on [t1, ). Therefore, since there are functions h(t) as above which tend arbitrarily
fast to zero as t — oo, we see that Theorem 5.2]allows 1(t) to tend arbitrarily fast to
zero as t — oo and allows solutions of (5.17)) to tend arbitrarily fast to oo as [x| — .
However conditions (5.13), (5.14), and do require that 1 () does not oscillate

too much as t — oo.
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Remark 5.2. Let ¢ : [fg, 00) — (0, o) be a continuous function such that

ftm ViP(s)ds < co.

(As pointed out in the previous remark, this will be the case if holds.) Then
there exists a continuously differentiable function i : [tg, c0) — (0, 00) satisfying
both (5.13) and (5.15) for some M € (1, c0) if and only if ¢ € RV(-2p) for some
B € (1,00). In this case pM = + M

5.3 RV and RPV solutions for a class of third order
nonlinear differential equations

The results of this section are based on the paper [65] by Jaro$, Kusano, and Mari¢.
Let us consider the third order differential equation of the form

X"+ 2p(t)x" + p'(H)x = F(t,x), (5.16)
where p is continuously differentiable on [a, ), F is continuous on [4, ) X R and
[F(t, u)l < G(¢,u),

where G : [a,00) X R — [0, ) is a continuous function which is nondecreasing
in the second variable for t > a. Along with consider the self-adjoint linear
equation

v +2pt)y +p'(t)y = 0. (5.17)
With the help of the results for linear second order equations (Theorems
2.4), we indicate the situation in which has a fundamental set of
solutions consisting of regularly and rapidly varying functions. We then establish

the conditions under which (5.16) possesses a set of solutions which are asymptotic
as t — oo to the indicated RV and RPV solutions of (5.16).

5.3.1 The self-adjoint equation

Theorem 5.3. Let C be a constant such that C < 1/4 and let g, 0, with o < o, denote the
real roots of A> — A + C = 0. If p is integrable on [a, o) and satisfies

tlim tf p(s)ds = 2C, (5.18)
—00 ¢

then (5.17) has a fundamental set of RV (hence nonoscillatory) solutions y;(t),i=1,2,3,
of the form
yi(t) = P2Ly(1), yalt) = to(t), y3(t) = £7La(b), (5.19)

where L1 € SV, Lo(t) — 1/(1 = 2p), and La(t) ~ 1/((1 — 20)*L1(t)) as t — oo.
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Proof. By Theorems[2.2]and 2.3} condition (5.18) is necessary and sufficient for the
equation
1
z" + Ep(t)z =0 (5.20)
to possess two linearly independent RV solutions of the form u(t) = t?L;(t) and
o(t) = t°Ly(t), where L1 € SV and Ly(t) ~ 1/((1 — 20)°L1(t)) as t — oo. It is
known that if {u,v} is a fundamental set of solutions of (5.20), then {y1, y2, y3},

where y; = u?, Y2 =Uv,y3 = v?, is a fundamental set of solutions of (5.17). Simple
application of RV functions now gives the result. a

The borderline case (C = 1/4) between oscillation and nonoscillation of (5.20)
is treated in the next theorem.

Theorem 5.4. Suppose that

. * 1
lim p(s)ds = 5

t—oo ¢

Suppose furthermore that the function

o=t [ perds—3

[e0

fdet<oo, where Lp(t):foow)i—s)l $ < o0

t t
Then equation has a fundamental set of RV(1) (hence nonoscillatory) solutions
yi(t),i=1,2,3, of the form
yi(t) = tLa(t), ya(t) = tIntLa(t), ya(t) = tIn’ tLs(t),
where L1(t) = k € (0,00), Lo(t) = 1, L3(t) = 1/k> as t — oo.

Proof. One proceeds exactly as in the proof of the previous theorem, using this
time Theorem 2.4 o

satisfies

and

Theorem 5.5. Let p(t) < 0 for t > a. If for each A > 1

At
}HE}, (—tft p(s) ds) = 00, (5.21)

then (5.17) has at least two RPV solutions such that the first of these solutions decreases
and is of the class RPV (—co) whereas the second one increases and is of the class RPYV(c0).

Proof. From Theorem (5.20) has solutions u € RPV(—) and v € RPV(0)
if and only if (5.21) holds. It is clear from the definition of RPV functions that
y1 = u? € RPV(-o0) and y3 = v> € RPV(0). O

Note that the third linearly independent solutions y, = uv need not to be RPV
at all. This is shown by the example: u(t) = ™!, v(t) = €', so that ya(t) = 1.
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5.3.2 RV and RPV solutions of the perturbed equation

First we establish sufficient conditions for (5.16)) to have solutions x1, xp, x3 with
the same asymptotic behavior as the solutions y; = 2, y» = uv, y3 = v* of (5.17),
respectively. Then we apply these results to construct RV and RPV solutions of
(5.16).

Theorem 5.6. If for some a > 0
f v2(s)G(s, au’(s)) ds < oo, (5.22)
a

then there exists an eventually positive solution x1 of (5.16) such that x1(t) ~ au®(t)/2 as

t — oo.

Proof. Choose T > a such that

f“’ v?(s)G(s, au’(s)) ds < E’
T 2

which is possible by (5.22)). Define the set X; by
X1 = {y € C[T, ) : 0 < x(t) < au?(t),t > T}

and the integral operator ¥ by

ﬂx(t):%uz(t)+u2(t) ft ( ft u2(152) ft uz(lsl)dsl dsz)u2(s)F(s,x(s))ds,

t > T. It can be shown that all the hypotheses of the Schauder-Tychonoff fixed
point theorem are fulfilled, and thus it ensures the existence of x; € X; such that
x1 = F1x1. So x7 is also a solution of (5.16). The asymptotics of x1 is an immediate
consequence of the integral equation x; = F7x;. |

The proofs of the next two theorems are also based on the Schauder-Tychonoff
fixed point theorem; we omit details.

Theorem 5.7. If for some 5 > 0

f B u(s)o(s)G(s, pu(s)o(s)) ds < oo, (5.23)

then there exists an eventually positive solution x, of (5.16)) such that xo(t) ~ Bu(t)v(t)/2

ast — oo,

Theorem 5.8. If for some y > 0
f u*(s)G (s, yvz(s)) ds < oo, (5.24)
a

then there exists an eventually positive solution x5 of (5.16)) such that x3(t) ~ yv?(t)/2 as

t — oo.
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If p satisfies condition (5.18)), then the existence of a fundamental set of RV

solutions to (5.17) given by (5.19) is guaranteed. Then, of conditions (5.22), (5.23)

and (5.24) hold, Theorems respectively, guarantee the existence of a
fundamental set of solutions xj, x2, x3 of (5.16) such that x;(t) ~ a;y;(t) as t — oo,

a; > 0,1=1,2,3. But this also means that x; are in RV. As an illustration, take
F(t,x) = t"M(t)|x]°sgnx, w € R, 6€(0,00), Me SV,

where for a suitable choice of w, 6 the conditions posed on G are fulfilled.

To obtain the existence and asymptotic behavior of RPV solutions of the
perturbed equation (5.16) with p(t) < 0, one proceeds in the same way as above in
the RV case.

5.4 Classification of convergence rates of solutions to
perturbed first order ODE'’s

The content of this section is based on selected results from Appleby, Patterson
[6]. We are interested in a classification of the rates of convergence to a limit of the
solutions of the scalar differential equation

x'(f) = —f(x(t)) + g(t), t>0, x(0)=¢. (5.25)
We assume that the unperturbed equation
x'(t) = —f(x(t), t>0, x(0)=C (5.26)

has a unique globally stable equilibrium (which we set to be at zero). This is
characterized by the condition x f(x) > O for x # 0, f(0) = 0. Further we assume that
f € C(R,R), g € C([0,),R), f is locally Lipschitz continuous on R. We suppose
that f(x) does not have linear leading order behavior as x — co; moreover, we do
not ask that f forces solutions of to hit zero in finite time. We define

1
1
F(x)—fx %du, x>0,

and avoiding solutions of equation to hitting zero in finite time forces
lim, 0+ F(x) = co. We notice that F : (0,00) — R is a strictly decreasing func-
tion, so it has an inverse F~!, and we have lim;_,o, F"'(t) = 0. The significance of
the functions F and F~! is that they enable us to determine the rate of convergence
of solutions of to zero, because F(y(t))—F(C) = t fort > 0 or y(t) = F-}(t+F(Q))
for t > 0.Itis then of interest to ask whether solutions of will still converge to
zeroast — oo, and how this convergence rate modifies according to the asymptotic
behavior of g. In order to do this with reasonable generality we find it convenient
and natural to assume at various points that the functions f and g are regularly
varying.
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The main result of [6], which characterizes the rate of convergence of solutions
of (5.25) to zero, can be summarized as follows: Suppose that f € RV((f), p > 1,
and that g is positive and regularly varying at infinity, in such a manner that
y g(®)
im——
t=o0 (f o F1)(1)
exists. If M = 0, the solution of (5.25) inherits the rate of decay to zero of y, in the
sense that
L FG)
im =

t—00 t

=: M € [0, o0]

1.

If M € (0, o0) we can show that the rate of decay to zero is slightly slower, obeying

Jim = (xt(t)) —A=A() € (0,1)

t—oo

and a formula for A purely in terms of M and 8 can be found. Finally, in the case
that M = oo can be shown that

o FO) _

t—00 t

0.

If it is presumed that g is regularly varying at infinity with negative index, or g is
slowly varying and is asymptotic to a decreasing function, then the exact rate of
convergence can be found, namely that lim;_,« f(x(t))/g(t) = 1. These asymptotic
results are proven by constructing appropriate upper and lower solutions to the
differential equation (5.25) as in [3]].

In order to simplify the analysis, we assume that g(t) > 0, ¢t > 0; x(0) = £ > 0.
Note that the results can rapidly be extended in the case g(t) < 0 and & < 0.

We will not give the proofs of all the results presented here; note that some of
them are rather technical. We prefer to present — for illustration — just a sketch
of one selected proof. However, we give several comments.

The first result says that the global convergence of solutions of (5.25), as well
as the rate of convergence of solutions to 0 is preserved provided the perturbation
g decays sufficiently rapidly. In order to guarantee this, we request only that f be
asymptotic to a monotone function close to zero.

Theorem 5.9 (Appleby, Patterson [6]). Let there exist ¢ such that

e
tlirg}r o0 =1, ¢ isincreasing on (0,0). (5.27)
If
, 8(#)
lim ———— =0, 2
PR ENH 629
then the unique continuous solution of (5.25) obeys
im 2¢O _ g (5.29)

tooo  f
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Immediately this theorem presents a question: Is it possible to find slower rates
of decay of g(t) — 0 as t — oo than exhibited in (5.28), for which the solution x
of still decays at the rate of the unperturbed equation, as characterized by
(5.29)? In some sense, the next theorem says that the rate of decay of g in
cannot be relaxed, at least for functions f which are regularly varying at zero with
index 8 > 1, or which are rapidly varying at zero.

In the case when f is regularly varying at 0 with index 1 (and f(x)/x — 0
as x — 0), the condition (5.28) is not necessary in order to preserve the rate of
decay embodied by (5.29). A more careful analysis is needed to characterize the
asymptotic behavior of solutions of (5.25).

Theorem 5.10 (Appleby, Patterson [6]). Let x be the unique continuous solution of
(5.25). Suppose that there exists ¢ such that (2.24) holds, and suppose further that there
exists M > 0 such that

. gty
Him FoFD M. (5.30)
Then x(t) —» 0 as t — oo.
(i) If f € RV(B) for B > 1, then
lim @ = A.(M) € (0,1), (5.31)

where A, is the unique solution of (1 — ANAF 6D — M.
(ii) If f o F1 € RV(-1), then

lim

lim P(xt(t)) = AM) € (0,1),

where A. is the unique solution of (1 — A.)/A. = M.

If y is the solution of (5.26), we have y(t)/F~1(f) = 1 as t — co. Moreover, in
the case when > 1, as F~! € RV(-1/(8 — 1)), we have

-1
im X _ im x() im F A _ AZPIED S
t—o00 y(t) t—oo F-1 (t) t—oo F-1 (t)

Therefore, the solution of (5.25) is of the same order as the solution of (5.26),
but decays more slowly by a factor depending on M. In the second case, when
1 e 8V, we have

x(t) . FUA

lim @ = lim im
t—o0 Y(t) oo F1(f) tooo  F-1(F)

so once again the solution of is of the same order as the solution of
There is a greater alignment of the hypotheses that appears at a first glance.

When f € RVy(p) for B > 1, it follows that F € RVy(1 — ) and therefore that

F1' € RV(-1/(-1))and foF~! € RV (-B/(B—1)). Hence we see that the hypothesis
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of part (ii) are in some sense the limit of those in part (i) when f — oo. This suggests
that part (ii) of the theorem applies in the case when f is a rapidly varying function
at 0, and the solutions of the unperturbed differential equation are slowly varying
at infinity. Moreover, the solution of the perturbed differential equation should
also be slowly varying in this case. If we suppose that f o F~! € RV(-1), then
F~1 € 8V. Therefore, we do not need to assume this second hypothesis in part (ii)
of the above theorem. Further note that if f € RPV((c0), then F1e8YV,see[6].
We notice that viewed as a function of M, A. : (0,00) — (0,1) is decreasing
and continuous with limp;0+ A(M) = 1, limye0 A(M) = 0. The first limit
demonstrates that the limit in is a continuous extension of the limit observed
in Theorem [5.9] because the hypothesis can be viewed as with M =0,
while the resulting limiting behavior of the solution (5.29) can be viewed as
where A. = 1. The monotonicity of A. in M indicates that the slower the decay
rate of the perturbation is (i.e., the greater is M) the slower the rate of decay of the
solution of is. Since limpj—0 A«(M) = 0, this result also suggests that

g(t)

}Ln; m =00 (5.32)
implies
lim £ (xt(t)) =0, (5.33)

so that the solution of the perturbed differential equation entirely loses the de-
cay properties of the underlying unperturbed equation when the perturbation g
exceeds the critical size indicated by (5.30), and decays more slowly yet. This
conjecture is borne out by virtue of the next theorem.

Theorem 5.11. Let x be the unique continuous solution of (5.25). Suppose that there
exists ¢ such that (2.24) holds, and suppose further that f and g obey (5.32). Suppose
finally that x(t) — 0as — co. If f € RVo(B) for B > 1 or f o F-1 € RV(-1), then the

unique solution of (5.25)) obeys (5.33).

Proof. We give only a sketch of the proof when f o F~! € RV(-1) and F~! € SV.
The other part is proved similarly. For details see [6]. Since f(x)/¢(x) — 1 as
x — 0+ and F71(t) = 0 as t — oo, we have

F (¢
t=eo f(F7H(1))
Henceh = ¢ o F1e RV(-1). Lete € (0,1/2). By (5.32), we have that there exists
T1(e) > 0 such that h(t) < 2g(t) for t > Ty(¢). Also, as h € RV(-1), we have that

h(et)/h(t) — 1/e as t — oco. Hence there exists T>(¢) > 0 such that h(et) < 2h(t)/e
for t > Ty(¢). Define T(¢) = 1 + max{T;(¢), T2(¢)}. Now define

B 2x(T) x(T)
K = max {2, 1) F—l(gT)}'
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where x1(¢) > 0 is such that f(x) < (1 + €)¢(x) for x < x1(¢), and also define
xi(t) = F'[e(t = T) + F(x(T)/K)],

t > T. It can be shown that x; (t) < —f(x.(#)) + g(t), t > T; x.(T) < x(T). Therefore,
we have that x (t) < x(t) for t > T. One can then get

F(x(t F(x(t
0< li%minf@ < limsup @ <e.
- t—o0
Letting ¢ — 0+ gives (5.33). O

We observe that the hypothesis that x(t) — 0 as — oo has been appended to the
theorem. This is because the slow rate of decay of ¢ may now cause solutions to
tend to infinity, if coupled with a hypothesis on f which forces f(x) to tend to zero
as x — oo at a sufficiently rapid rate. We prefer to add this hypothesis, rather than
sufficient conditions on f and ¢ which would guarantee x(t) — oo.

Several further situations are considered in [6]. For instance, g is assumed to
be regularly varying at infinity.

5.5 Nearly linear differential equations

The results of this section are taken from the paper [149] by Rehdk. We consider
the nonlinear equation

(G(y")) = p(OF(y), (5.34)

where pisa positive continuous function on [2, o0) and F, G are continuous functions
on R with uF(u) > 0,uG(u) > 0 for u # 0. To simplify our considerations we
suppose that F and G are increasing and odd. Nonlinearities F and G are further
assumed to have regularly varying behavior of index 1 at zero. More precisely, we
require

F(I-1),G(l-1) € RVo(1); (5.35)

the class RV being defined below. This condition justifies the terminology a nearly
linear equation. Indeed, if we make a trivial choice F = G = id, then (5.34) reduces
to a linear equation. It is however clear that in contrast to linear equations, the
solution space of is generally neither additive nor homogeneous. Examples
of F(u) and G(u) which lead to a nonlinear equation and can be treated within this

theory are: u|In [ul|, or u/|In [ul], or u/ V1 + u?, and many others.

As we could see in Chapter [} theory of regular variation has been shown very
useful in studying asymptotic properties of Emden-Fowler type equations, e.g. of
the form y”” = q(t)|lyl” sgn y or, more generally,

v’ = qt)e(y), (5.36)
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where |p(| - )] € RV(y) or |p(| - )| € RVo(y), y > 0. Usually the sub-linearity
condition resp. the super-linearity condition is assumed, i.e., ¥ < 1 resp. y > 1,
and such conditions play an important role in the proofs. Notice that from this
point of view, equation (which arises as a variant of with specific
nonlinearities) is neither super-linear nor sub-linear, since the indices of regular
variation of F and G are the same. Therefore, asymptotic analysis of in the
framework of regular variation requires an approach which is different from the
usual ones for the above mentioned Emden-Fowler equation with y # 1. The
crucial property is now the fact that the nonlinearities in are somehow close
to each other (they can differ by a slowly varying function). It turns out that
a modification of some methods known from the linear theory is a useful tool.
However, as we will see, some phenomena may occur for which cannot
happen in the linear case.

We are interested in asymptotic behavior of solutions y to such that
y(H)y'(t) < 0 for large t. Without loss of generality, we restrict our study to eventu-
ally positive decreasing solutions of equation (5.34); such a set is denoted as DS.
As we will see, for any y € DS, lim;, ¥’ (t) = 0.

We start with the simple result which gives the conditions guaranteeing slow
variation of any solution in DS.

Theorem 5.12. Assume that

tlim t f p(s)ds =0, (5.37)
—00 t
limsup Lr(u) < oo and lim(i)nfLG(u) > 0. (5.38)
u—0+ u=0+
Then
0+ DS c NSV.

Proof. Rewrite equation (5.34) as an equivalent system of the form

Yy =-G '), u =-pHFy),

where G7! is the inverse of G. Then we apply the existence result [20, Theorem 1]
to obtain DS # 0.

Take y € DS, ie, y(t) > 0, y'(t) < 0, t > tp. Then lim;, y'(t) = 0. Indeed,
G(y’) is negative increasing and so is y’. If lim;,, ¥'(t) = —c < 0, then y(t) — y(to) ~
—c(t —tp) as t — oo, which contradicts eventual positivity of y. Integration of
from ¢ to oo yields

Gy () = ft PEF(y(s)) ds.

Hence,

W OILe(y B = ft PEVELE(Y(s) ds < (1) ft PELEy(S)) ds.
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Thus,
< s)Lr(y(s))ds < —f (s)ds, 5.39)
0 = Leyon J, POV S o re (
where M, N are some positive constants which exist thanks to (5.38). Since the
expression on the right hand side of (5.39) tends to zero, it follows that ty’(t)/y(t) —
Oast — oo, and y € NSV follows. O

Remark 5.3. Condition (5.37) is somehow necessary. Indeed, take y € DS N SV
and assume that liminf, .oy Lr(u) > 0 and limsup,,_,,, Lg(u#) < co. First note that
because of monotonicity of y’, we have ty'(t)/y(t) — 0, and so y € NSV. Set
w = G(y')/y. Then w satisfies

/

F
¥
Yy y

for large t. There exists N € (0, o) such that

w' = p(t) (5.40)

y'(h)
y(#)

0 < —tw(t) < -NtZ—=~ — 0

as t — oo. Hence,
REPNAC) . j“ y'(s)
w(s ds < oo and limt w(s ds =0.
JECe 9%
Integration (5.40) from ¢ to co and multiplying by ¢, we get
*  Fy(s) j“ y'(s)
—tw(t) =t s)———ds—t w(s ds,
=t o %0

which implies limy_,o ¢ ftm p(s)Lr(y(s))ds = 0. Since M € (0, o0) exists such that
Lr(y(t)) > M for large t, condition (5.37) follows.
A necessity is discussed from certain point of view also in Remark[5.6|

Remark 5.4. Observe that in Theorem we are dealing with all SV solutions
of (5.34). It follows from the fact that SV solutions cannot increase. Indeed, for
a positive increasing solution u of (5.34), due to convexity, we have u’(f) > K; for
some K; > 0. By integrating, u(t) > K;t+ K3, which contradicts the fact the u € SV.

Remark 5.5. The statements of Theorem [5.12] and Remark [5.3] can be understood
as a nonlinear extension of Theorem 2.T}(i).

In the next result, we derive asymptotic formulae for SV solutions provided p
is regularly varying of index —2. Define

. * du
F(X):‘flw, x> 0.
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The function F(x) is increasing on (0, o). The constant 1 in the integral is unimpor-
tant; it can be replaced by any positive constant. Denote the inverse of F by F~!.
We have |[F| € SV and in general lim,,_,o+ |F(1)| can be finite or infinite. Denote

tp(t)
Lg(1/t)

and note that H € RV(~1) provided p € RV (-2).

H(t) =

Theorem 5.13. Assume that p € RV(=2), lim, o [F(1)| = oo, and
Lo(ug(u)) ~ Lg(u) asu — 0+, (5.41)
forall g € SVy. If y € DS N SV, then —y € I1(—ty’(t)). Moreover:
(i) Ifj;o H(s)ds = oo, then

t
y(t) = F1 {— f (1 + o(1))H(s) ds} (5.42)

(and y(t) — 0) as t — oo.
(ii) If [~ H(s)ds < o, then

y(t) = £ {ﬁ(y(oo)) + j; (1 +o(1))H(s) ds} (5.43)

(and y(t) — y(oo) € (0,0)) as t — oo.
Proof. Take y € DS N SV and let ¢y be such that y(t) > 0, y’(t) < 0 for t > ty. Then
(G =pF(y) e RV(-2+1-0) = RV(-2)

provided y(t) — 0ast — oo. If y(t) — C € (0, o), then we get the same conclusion
since F(y(t)) = F(C) € (0, 0), and so pF(y) € RV(-2). Thus

G-y'(1) = -G(y'()) = j; (G(y'(5)))ds € RV(-1).

In view of —y’ = G"HG(~y’)), we get =y’ € RV(~1). Hence,

A +y) (M -y W) A G (S
——ty’(t) = ft du ds 5 =lnA (5.44)

-ty L -y 1
as t — oo, thanks to the uniformity. This implies —y € II(—ty’(t)). Define

t
() =160/0) - [ G s

fo
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Then W'(t) = tp(t)F(y(t)) € RV(-1), which implies ¥ € IT(tW’'(t)), similarly as in
(5.44). Further, we claim W € IT(-tG(y’(t))). Indeed, fix A > 0, and then

WAL - () _ AG(Y/ (A1) i1 fft G(y'(s))ds
—tG(y'()) ~ -Gy (1) —tG(y' (1))
_AG(y' (A1) Yoy o du
= G ®) ”*fl @) f1 v =

as t — oo, thanks to G(-y’) € RV(-1) and the uniformity. From the uniqueness of
the auxiliary function up to asymptotic equivalence, we obtain

- G(y' (1)) ~ tp()F(y(1)) (5.45)

as t — oo. Condition (5.41) is equivalent to Lg(v(t)/t) ~ Lg(1/t) as t — oo, for all
v € SV. Hence,

=G(y' (1) = =y’ (OLa(Lyy (/) ~ =y (HLc(1/D)
as t — co. Combining this relation with (5.45), we get

—y'()  tp()
F(y(®)  Lc(1/1)

ast — oo, thatis
y'(t)
F(y(#))

as t — oco. By integrating this relation over (¢, f) we obtain

= —(1 + o(1))H(}) (5.46)

t

Fy() = F(y(t)) - f (I +0(1))H(s)ds, (5.47)
to

which implies (5.42) provided fa “H(s)ds = 0. Clearly then y(t) — O as t — oo,

otherwise we get a contradiction with the divergence of the integral in (5.47). If

fa “H (s)ds < oo holds, then we integrate (5.46) over (t, o) obtaining (5.43). In this

case, y(t) must tend to a positive constant as t — oo. Indeed, if y(t) —» 0 ast — oo,
then the left-hand side of (5.47) becomes unbounded which is a contradiction. 0O

Remark 5.6. A closer examination of the proof of Theorem shows that the
condition lim, g+ |[F(#)| = oo is somehow needed. Indeed, if we assume that this
limit is finite and that fa “H (s)ds = oo, then in view of we get contradiction.
As a by-product we then have a non-existence of SV solutions. If lim,,_,o+ IF(u)| <
oo holds when fa * H(s)ds < oo, then no conclusion whether y(c0) = 0 or y(co) > 0
can generally be drawn. Note that such phenomena cannot occur in the linear
case.
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Remark 5.7. There exists an alternative way how to prove (5.45)). Indeed, denote
L(t) = L,(HF(y(t)) and observe that L € SV. Therefore,

[ rorwenas= [ s ds~ 110 = poFoo)
t t

as t — oo by the Karamata theorem. Since —G(y/'(t)) = j;oo p(s)F(y(s)) ds, we obtain
(5.45).

Remark 5.8. Observe that to prove asymptotic formulae for decreasing SV so-
lutions of we do not require (even one-sided) boundedness conditions on
Lr and Lg such as (5.38). As for condition from Theorem [5.13] it is not too
restrictive. Many functions satisfy it, for example, Lg(u) — C € (0,00) as u — 0+,
or Lg(u) = [Inful|In|In [u|l|*2, a1, a2 € R. Compare also with ([.23).

The value -2 in the condition p € RV(-2) is natural and consistent within our
setting. Indeed, since we work with SV solutions, the expression on the left-hand
side of (5.34), which is somehow close to the second derivative, is expected to be
in RV(-2).

Corollary 5.1. Assume that p € RV(=2) and lim;—,c Ly(t) = 0. Let (5.38) and (5.41)
hold. Then any solution y € DS belongs to NSV. Moreover, —y € II(—ty'(t)) and

asymptotic formulae (5.42)) or (5.43)) hold.

Proof. By the Karamata theorem,

t[ p(s)ds = tft 5_2Lp(s) ds ~ Ly(t) = 0

ast — oo, and so (5.37) follows. Further, in view of limsup,,_,,, Lr(u) < oo, exists
M > 0 such that we have for x < 1,

1
. du Inx
Py <— | £ -2
&)= fx WM~ M
which implies lim,_+ E(x) = —c0. The statement now follows from Theorem
and Theorem O
Remark 5.9. Corollary[5.T|can be seen as a nonlinear extension of Theorem [2.11]

Example 5.1. Consider the equation

L,(t)yy
2|In|yll”

(' Lo(ly')) = (5.48)
where Lg € SVpand L, € SV. Then E(x) = %x)z, x€(0,1), F(x) » —oasx — 0+,
and F1(u) = exp{— V-2u}, u < 0. We restrict our considerations to positive (de-
creasing) solutions y of (5.48) such that y(t) < 1 for t > to; we have this requirement
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because we need F(u) to be increasing at least in a certain neighborhood of zero
(here it is (0,1)). Note that a slight modification of F, namely F(u) = x/|In|x/k||,
k € (0, 00), ensures the required monotonicity of F on the (possibly bigger) interval
(0, k).

(i) Let G(u) = u|In|ull and L,(t) = m, where / is a continuous function on
[a, 00) with |h(t)] = o(Int) as t — oo, and such that Int + h(t) > 0 for t € [a, o).
Examples of h are h(t) = cost or h(t) = In(In t). Note that the required monotonicity
of G is ensured in a small neighborhood of zero But this is not a problem since
we have 1 as the argument of G, and y/(t) tends to zero as t — oo. Nevertheless,
we could modify G similarly as in the above mentioned modification of F. The
function H reads as

1 1 1

A0 = S WO (/0] e+ AO)In ity

ast — oo. Thus, foo H(s)ds < o0 and we have ftoo H(s)ds ~ h% ast — oco. From
Corollary5.T} we get that for any eventually decreasing positive solution y of (5.48)
(with y(t) < 1forlarge t), —yisinII (y is in NSYV), y tends to y(co) > 0 and satisfies

the formula

y(t) = exp {— \/ (In y(c0))? — W}

ast — oo.

.. o oy
(ii) Let L, be the same as in (i) and G(u) = Tiaa Then

Vita 1

HO = {int+ i) ~ fint

as t — co. Note that (In(Inf)) = -, and so f * H(s)ds = 0. From Corollary

tint’

we get that for any eventually decreasing positive solution y of (5.48), —y is in I1
(yis in NSV), y tends to zero and satisfies the formula

y(t) = exp {~ (1 + o(1)) In(In 1)}

ast — oo,

(iii) Let Ly(t) = where h is as in (i), and G = id. Then

1
(nt+h(D)2’

1 1

HO = dnt+ R~ 1nn?

as t — co. Applying Corollary[5.1} we get that any eventually decreasing positive
solution y of (with y(t) < 1 for large t) obeys the same asymptotic behavior
as y in (i).

Among others, the above examples show how the convergence / divergence of
the integral f * H(s) ds can be affected by the behavior of both p and G.
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Under the conditions of Theorem 5.13}(i), it does not follow that

y(t) ~ _{ fH(s)ds}

as t — oo; this fact was observed already in the linear case, see [45, Remark 2], see
also the text after Theorem However, we can give a lower estimate under
quite mild assumptions. For technical reasons we consider positive decreasing
solutions on [0, o) (provided p € C([0, c0)).

Theorem 5.14. (i) Let liminf, o+ Lg(1) > 0 and (5.37) hold. Then y € DS N SV
satisfies the estimate

lim y()
iminf ;
F-1 {F(y(O)) - Mfo sp(s) ds}

>1, (5.49)

where M is some positive constant. The constant M can be taken such that M =

1/ infyeo, 1y 0y Lo (1)-
(ii) In addition to the conditions in (i), assume that limsup,,_,,, Lr(u) < oo holds.
Then y € DS implies y € NSV and

t
lign inf y(t) exp {N f sp(s) ds} > y(0),
—00 0
where N is some positive constant. The constant N can be taken such that N =
SUP,eqo,y(0y) LF(W)/ infuego,y o)1 Lo (u)-
Proof. (i) Take y(t) e DSNSV,t > 0. For A € (0,1), we have

~G(y'(A)) + G
> 33;» - y(/\t)) f pE)E(y(s) ds < f p(s)ds (5.50)

t > 0. Thanks to liminf,, o+ Lg(1) > 0, there exists M > 0 such that

—y(A)  GW®)  —yAHLcly' ) | Gy'®) f n(s)
ME(y(At)) — F(y(At)) = F(y(Ab) F(y(At)) —

t > 0, where the last estimate follows from (5.50). Integration over A € (0, 1) yields

(5.51)

G t
it - Fyon + 2L f o <1 fo PEds  (552)

w1he1t'e we substituted s = At in fol % and we applied the Fubini theorem in
fo fm p(s)ds dA. From (5.52), we get

t
> {won +mow o) [ 72 ou [pwath. 69
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Since F(y) € SV, the Karamata theorem yields

, P ds —tG(y'(t))
0 < -Gy () fo F(y(s)  F(y()
t

= F(y(t))ft p(s)F(y(s))dsStft p(s)ds,

where the asymptotic relation holds as t — co. Hence,

, ' ds B
Gy () fo g = o

ast — co. Formula (5.49) now easily follows from (5.53).

(ii) Take y(t) € DS, t > 0. Theny € NSV follows from Theorem[5.12| Thanks to
(5.38) which is in fact assumed, there exists N > 0 such that ~NG(y’(At))/F(y(At)) >
-y’ (At)/y(At), t > 0. As in the proof of (i), we then get

YAy Gy®) f
y(Ay)  Fy(An) —
Since this estimate is a special case of (5.51), the rest of the proof is now clear. O

p(s)ds.
At

Remark 5.10. It is reasonable to require the conditions lim,_,o+ IF(u)] = o and
fooo sp(s)ds = co when applying Theorem gll Further notice that the proof of
Theorem does not require p € RV(-2), in contrast to the approach known
from the linear case, cf. [45, Remark 2]. From this point of view, the result is an
improvement even in the linear case. Nevertheless, in order to see Theorem
as a partial refinement of information about solutions treated in Theorem [5.13}(i),
it is reasonable to assume p € RV(-2).

We now consider more general equation

(r(G(y")) = p(hE(y), (5.54)

where r and p are positive continuous functions on [4, o) and F, G are as before.
First note that in the case when G = id and fa *1 /1(s)ds = oo, equation (5.54) can
be transformed into the equation of the form (2.1)) and the type of the interval (on

which the equation is considered) is preserved. Indeed, denote R(t) = fa t 1/r(s)ds
and introduce new independent variable s = R(f) and new function z(s) = y(R™1(#)).
Then (5.54) is transformed into

2

d
d_si = 7(s)F(z), where 7(s) = p(R™1(s))r(R71(s)),

s € [R(a), o0). For a general G however such a transformation is not at disposal,
and we must proceed directly. Let DS, denote the set of all eventually positive
decreasing solutions of equation (5.54). An extension of Theorem to (5.54)
reads as follows.
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Theorem 5.15. Assume that

.t * _
tlgg 0 j; p(s)ds =0, (5.55)
limsup,,_,,, Lr(u) < oo,
‘fwc4fé ds = oo (5.56)
a r(s) '

forall M € (0, 00), and Lg(u) > N, u € (0, 00), for some N > 0. Then @ # DS, c NSV.

Proof. We give only a concise proof. Existence of solutions in DS, again follows
from [20]. Take y € DS,. Then r(t)G(y'(t)) — 0 as t — oco. Otherwise we get
contradiction with eventual positivity of y, because of condition (5.56). Similarly
as in the proof of Theorem [5.12| we get that there exists K € (0, o) such that

Sy ) [ K
o) SLc;(|y'<t>|>r<t>ff p(s)dssra)ft p(s) ds

for large t. Hence, y € NSV. O

For p € RV(B) and r € RV(B + 2) with f < -1, denote

tp(t)
(=B —Dr(t)

and note that then H, € RV(-1). An extension of Theorem to (5.54) reads as
follows.

Hr(t) =

Theorem 5.16. Assume that p € RV(B) and r € RV(B + 2), with p < —1. Further, let
limy, 0+ |E(u)| = co and (5.4T)) hold. Ify € DS, NSV, then —y € I1(—ty'(t)). Moreover:
(i) Iffuoo H,(s)ds = oo, then (5.42) with H, instead of H holds and y(t) — Oast — oo.

(ii) Iffaoo H(s)ds < oo, then (5.43) with H, instead of H holds and y(t) — y(co) €

(0,00) as t — oo.

Proof. We give again only a concise proof. Take y € DS, N SV. Then (rG(y')) €
RV (B). Hence, —rG(y’) € RV(B + 1), as so —y' € RV(-1), which implies -y €
[(-ty’) by (5.44). If L = L,F(y), then L € 8V and we have

)y O 1) ~ ~rOG( () = ft P(S)E(y(s)) ds = ft L(s) ds
tﬁ+1 i
T —(B+1)

) p(HF(y(t))

ot
GRS

as t — oo, where we applied the Karamata theorem. Asymptotic formulae then

follow similarly as (5.42) and (5.43) in the proof of Theorem[5.13] m|
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Remark 5.11. If p € RV(f), p < =1, and r € RV(B + 2), then (5.55) holds provided
L,(t)/L,(t) = 0 ast — oo. Indeed, by the Karamata theorem we have,

T tLy (£t Ly
@ft PO~ e R Lm ~ G+ DLO

as t — oo, and the claim follows.

Remark 5.12. Assume that p € RV(f) and r € RV(f + 2) with > —1. Recall
that in the previous theorem we assumed f < —1. Take y € DS, N SV. Then
we get fa > p(s)E(y(s)) ds = oo since the index of regular variation of pF(y) is bigger
than —1. Integrating from ty to t, where fy is such that y(t) > 0,y'(t) < 0,
t > tp, we obtain r(t)G(y'(t)) = r(to)G(y'(to)) + ft; p(s)F(y(s)) ds. Hence, if we let
t tend to oo, then r(t)G(y'(t)) tends to co. Thus y’ is eventually positive, which
contradicts y € DS,. In other words, this observation indicates that SV solutions
should not be searched among DS, solutions in this setting. We conjecture that
we should take an increasing solution in order to remain in the set SV. Of
course, some logical adjustments then have to be made, like taking RV instead
of RV in (5.35). As for DS,, we conjecture that this class somehow corresponds
to RV(-1) solutions. Note that the integral fa “1/ r(s) ds (which is “close” to the
integral fa ~ G (M/r(s)) ds) is divergent for f < —1 resp. convergent for f > -1
since 1/r € RV(-p - 2).

We have not mentioned the remaining possibility so far, namely g = —1. This
border case is probably the most difficult one, and surely will require a quite dif-
ferent approach. The direct use of the Karamata theorem is problematic in contrast
to the corresponding situations in other cases. If p € RV(-1) and r € RV(1), we
cannot even say whether fa * p(s)ds, fa “1/ r(s) ds are convergent or divergent. In
fact, the situation is more tangled because of presence of nonlinearities F, G, where
SV components Lr, L are supposed to have a stronger effect than in the case
B # -1

As a conclusion of this section, we indicate some further directions for a pos-
sible future research. Asymptotic theory of nearly linear equations offers many
interesting questions. This section contains some answers but there are many is-
sues which could be followed further. There is also some space for improving the
presented results. We conjecture that the results can be generalized in the sense of
replacing condition by F(|- 1), G(| - ) € RVo(y), y > 0, which would lead to a
“nearly half-linear equation.” It is expected that — within our setting, with taking
RV instead of RV in (5.35) — increasing solutions of are in RV(1) and
asymptotic formulae can be established. In contrast to the linear case, a reduction
of order formula is not at disposal. A topic which would also be of interest is
to obtain more precise information about SV solutions of (2.I), for instance, by
means of the class I'IR,, cf. Theorem [2.13
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Chapter

Concluding remarks

It is evident that many other works can be found in which the theory of regularly
varying (or of somehow related) functions is applied to study differential equations
(or dynamic equations). However, the aim of this text is such that it cannot cover
everything (and with details). In the last chapter we briefly mention at least few
another works.

6.1 More on differential equations in the framework
of regular variation

Appleby in [4] considers the rate of convergence to equilibrium of Volterra inte-
grodifferential equations with infinite memory. It is shown that if the kernel of
Volterra operator is regularly varying at infinity, and the initial history is regu-
larly varying at minus infinity, then the rate of convergence to the equilibrium is
regularly varying at infinity, and the exact pointwise rate of convergence can be
determined in terms of the rate of decay of the kernel and the rate of growth of the
initial history. The result is considered both for a linear Volterra integrodifferential
equation as well as for the delay logistic equation from population biology.

The concept of subexponential functions (which are somehow related to RV
functions) is used, for instance, by Appleby, Gyori, and Reynolds in [5]]; the paper
examines the asymptotic behavior of solutions of scalar linear integro-differential
equations. See also Appleby, Reynolds [8)[7].

Regular variation was used by Mari¢, Radasin in [109] to study equations
arising in boundary-layer theory, see also [105, Chapter 4]. The core of such
considerations is based on the work by McLeod [118]. Van den Berg in [15]
established a result on the asymptotics of some solutions to a first order nonlinear
differential equation; a conspicuous feature of his consideration is its relation to
the nonstandard asymptotic analysis.

Several papers exist devoted to investigation of second order equations with

191
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deviating argument in the framework of regular variation, see Kusano, Mari¢
[95,196,97,08] for linear case and Kusano, Manojlovi¢, Tanigawa [92] and Tanigawa
[161,[163] for half-liner case. Note that the last mentioned paper utilizes the concept
of generalized regular variation. Common features of these works are that a
crucial role is played by the results for equations without retarded and advanced
arguments which can be seen as modifications of some theorems in Chapters
and (3| A desired solution is then obtained by the fixed point technique.

6.2 Regularly varying sequences and difference
equations

As mentioned in Subsection[I.3.3] the concept of regularly varying sequences was
introduced already by Karamata. Much later this theory was used to study asymp-
totic properties of linear and half-linear difference equations in Matucci and Rehak
[119, 120, 121}, 122], discrete versions of some of the statements from Chapters
and 3| can be revealed there. It should however be emphasized that the discrete
case requires to find new ways of the proofs at many points. A somewhat different
approach to the use of regularly varying sequences in linear difference equations
is represented by Kooman [81], see also related paper by Kooman [80]. Second
order Emden-Fowler type difference equations is investigated in the framework of
regular variation in [1] by Agarwal and Manojlovié¢. Other approach in the study
of Emden-Fowler type difference equations is represented by the papers [76,[77, 78]
of Kharkov. Some considerations in Kharkov’s papers can be seen as a discrete
analogues of the results by Evtukhov et al., see e.g. Subsection

6.3 Regular variation on time scales and dynamic
equations

The concept of regularly varying functions on time scales (or measure chains) is
introduced in [141] by Rehdk in order to study asymptotic behavior of dynamic
equations (which unify and extend differential and difference equations), see Sub-
section Other applications to linear and half-linear dynamic equations on
time scales can be found in Rehédk and Vitovec [152,[153]. The results can be viewed
as a unification and extension of some of the statements from Chapters[2Jand 3|and
corresponding statements for difference equations. Note that an important role is
played by an additional condition on the graininess u(t); it is somehow necessary
to assume that p(t) = o(t) as t — oo.

6.4 g-regular variation and g-difference equations

The concept of g-regularly varying functions was introduced in [I51] by Rehéak
and Vitovec in order to study asymptotic behavior of g-difference equations, see
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Subsection Linear g-difference equations in the framework of this theory
are studied in Rehak [142] [144]. Half-linear g-difference equations are studied in
[143] Rehak and Vitovec [154]. These results can be understood as a g-version of
some of the statements from Chapters[2and 3] It is worthy of note that a specific
approach is used for g-difference equations; this is due to pleasant properties of
g-regularly varying functions. Certain generalization of g-regular variation was
introduced in Rehdk [145] and applied in the study of general linear second order
g-difference equations. See also Rehak [148] where the classical Poincaré-Perron
type result was applied to examine generalized g-regularly varying solutions of
n-th order linear g-difference equations.
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